

Lecture Notes in Computer Science 3113
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Juhani Karhumäki Hermann Maurer
Gheorghe Păun Grzegorz Rozenberg (Eds.)

Theory Is Forever

Essays Dedicated to Arto Salomaa
on the Occasion of His 70th Birthday

13

Volume Editors

Juhani Karhumäki
University of Turku, Department of Mathematics
20014 Turku, Finland
E-mail: karhumak@cs.utu.fi

Hermann Maurer
Graz University of Technology
Institute for Information Systems and Computer Media
Inffeldgasse 16c, 8010 Graz, Austria
E-mail: hmaurer@iicm.edu

Gheorghe Păun
Romanian Academy, Institute of Mathematics
P.O. Box 1-764, 70700 Bucharest, Romania
E-mail: george.paun@imar.ro

Grzegorz Rozenberg
Leiden University, Leiden Institute of Advanced Computer Science (LIACS)
Niels Bohrweg 1, 2333 CA Leiden, The Netherlands
E-mail: rozenber@liacs.nl

The illustration appearing on the cover of this book is the work of Daniel Rozenberg
(DADARA)

Library of Congress Control Number: 2004108213

CR Subject Classification (1998): F.1, F.3, F.4, G.1, G.2

ISSN 0302-9743
ISBN 3-540-22393-2 Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are
liable to prosecution under the German Copyright Law.

Springer-Verlag is a part of Springer Science+Business Media

springeronline.com

c© Springer-Verlag Berlin Heidelberg 2004
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Boller Mediendesign
Printed on acid-free paper SPIN: 11019213 06/3142 5 4 3 2 1 0

Arto Salomaa

Preface

This Festschrift celebrates the 70th birthday of Arto Kustaa Salomaa (born
in Turku, Finland on June 6, 1934), one of the most influential researchers in
theoretical computer science.

Most of his research concerns theory – he is one of the founding fathers of formal
language and automata theory, but he has also made important contributions
to cryptography and natural computing. His approach to research in theoretical
computer science is exemplary and inspirational for his students, collaborators,
and the readers of his papers and books. For him, the role of theory (in computer
science) is to discover general rules of information processing that hold within
computer science and in the world around us. One should not waste time on
research concerning passing artifacts (or fashionable topics of the moment) in
computer science – theory should be permanently predictive, insightful, and
inspiring. That’s why we chose the title “Theory is Forever”.

The main source of his influence on theoretical computer science is his publica-
tions. Arto is a born writer – his papers and books are always most elegant. He
has a unique gift for identifying the real essence of a research problem, and then
presenting it in an incisive and eloquent way. He can write about a very involved
formal topic and yet avoid a (much too common) overformalization. Many of
his writings are genuine jewels and belong to the classics of theoretical computer
science. They have inspired generations of students and researchers. Indeed, even
computers as well as computer science have learned a lot from Arto’s publica-
tions – this is nicely illustrated by DADARA on the cover of this volume. His
writing talent extends beyond science – he writes beautiful and engaging sto-
ries, and his close friends very much enjoy receiving his long, entertaining and
informative letters.

There is much other information that could be cited in this preface, such as the
fact that he is one of the most celebrated computer scientists (e.g., he holds
eight honorary degrees), or that he has been very instrumental in providing the
organizational infrastructure for theoretical computer science in Europe (e.g.,
he is the past President of the European Association for Theoretical Computer
Science), or that he is an absolute authority on the Finnish sauna (including
both theory and practice). However, all of these accomplishments have been
documented already in many places (e.g., in the companion book “Jewels are
Forever”1 published on the occasion of Arto’s 65th birthday). Thus we have
restricted ourselves to reflections on his research and writings.

We are indebted to all the contributors for their tribute to Arto through this
book. We ourselves have benefited enormously through many years of collabo-
1 J. Karhumäki, H. Maurer, G. Păun, G. Rozenberg, Jewels are Forever, Contributions

on Theoretical Computer Science in Honor of Arto Salomaa, Springer-Verlag, 1999.

VIII Preface

ration with Arto from his guidance and friendship – editing this volume is just
a token of our gratitude. We are also indebted to Mrs. Ingeborg Mayer from
Springer-Verlag for the pleasant and efficient collaboration in producing this
volume. As a matter of fact this collaboration is quite symbolic, as Arto has
worked very closely with Springer-Verlag, especially with Mrs. Ingeborg Mayer
and Dr. Hans Wössner, on many projects over many years. Finally, our special
thanks go to T. Harju, M. Hirvensalo, A. Lepistö, and Kalle Saari for their work
on this book.

April 2004 Juhani Karhumäki
Hermann Maurer

Gheorghe Păun
Grzegorz Rozenberg

Table of Contents

Duality for Three: Ternary Symmetry in Process Spaces 1
Janusz Brzozowski, Radu Negulescu

Mathematical Proofs at a Crossroad? . 15
Cristian S. Calude, Solomon Marcus

Rational Relations as Rational Series . 29
Christian Choffrut

Networks of Standard Watson-Crick D0L Systems with Incomplete
Information Communication . 35

Erzsébet Csuhaj-Varjú

On the Size of Components of Probabilistic Cooperating Distributed
Grammar Systems . 49

Erzsébet Csuhaj-Varjú, Jürgen Dassow

Remarks on Sublanguages Consisting of Primitive Words of Slender
Regular and Context-Free Languages . 60

Pál Dömösi, Carlos Mart́ın-Vide, Victor Mitrana

A Semiring-Semimodule Generalization of ω-Context-Free Languages 68
Zoltán Ésik, Werner Kuich

Integer Weighted Finite Automata, Matrices, and Formal Power Series
over Laurent Polynomials . 81

Vesa Halava

Two Models for Gene Assembly in Ciliates . 89
Tero Harju, Ion Petre, Grzegorz Rozenberg

On Self-Dual Bases of the Extensions of the Binary Field 102
Mika Hirvensalo, Jyrki Lahtonen

On NFA Reductions . 112
Lucian Ilie, Gonzalo Navarro, Sheng Yu

Some Results on Directable Automata . 125
Masami Ito, Kayoko Shikishima-Tsuji

Rectangles and Squares Recognized by Two-Dimensional Automata 134
Jarkko Kari, Cristopher Moore

Substitution on Trajectories . 145
Lila Kari, Stavros Konstantinidis, Petr Sośık

X Table of Contents

Recombination Systems . 159
Mikko Koivisto, Pasi Rastas, Esko Ukkonen

Algebraic Aspects of Parikh Matrices . 170
Alexandru Mateescu

On Distributed Computing on Elliptic Curves . 181
Tommi Meskanen, Ari Renvall, Paula Steinby

On the Formal Modelling of Trust in Reputation-Based Systems 192
Mogens Nielsen, Karl Krukow

Issues with Applying Cryptography in Wireless Systems 205
Valtteri Niemi

On a Tomographic Equivalence Between (0,1)-Matrices 216
Maurice Nivat

P Systems with Tables of Rules . 235
Gheorghe Păun, Mario J. Pérez-Jiménez, Agust́ın Riscos-Núñez

Some Properties of Multistage Interconnection Networks 250
Azaria Paz

Structural Equivalence of Regularly Extended E0L Grammars:
An Automata Theoretic Proof . 259

Kai Salomaa, Derick Wood

Complexity of Evolving Interactive Systems . 268
Peter Verbaan, Jan van Leeuwen, Jǐŕı Wiedermann

Author Index . 283

Duality for Three: Ternary Symmetry in Process

Spaces

Janusz Brzozowski1 and Radu Negulescu2

1 School of Computer Science, University of Waterloo,
Waterloo, ON, Canada N2L 3G1

brzozo@uwaterloo.ca, http://maveric.uwaterloo.ca
2 Department of Electrical and Computer Engineering
McGill University, Montreal, Québec, Canada H3A 2A7

radu@macs.ece.mcgill.ca

Abstract. Ternary algebra has been used for detection of hazards in
logic circuits since 1948. Process spaces have been introduced in 1995
as abstract models of concurrent processes. Surprisingly, process spaces
turned out to be special ternary algebras. We study symmetry in process
spaces; this symmetry is analoguous to duality, but holds among three
algebras. An important role is played here by the uncertainty partial
order, which has been used since 1972 in algebras dealing with ambiguity.
We prove that each process space consists of three isomorphic Boolean
algebras and elements related to partitions of a set into three blocks.

1 Introduction

The concept of duality is well known in mathematics. In this paper we study a
similar concept, but one that applies to three objects instead of two. The road
that led to the discovery of these properties deserves to be briefly mentioned,
because several diverse topics come together in this work.

The usual tool for the analysis and design of digital circuits is Boolean al-
gebra, based on two values. As early as 1948, however, it was recognized that
three values are useful for describing certain phenomena in logic circuits [10]. We
provide more information about the use of ternary algebra for hazard detection
in Section 2.

Ternary algebra is closely related to ternary logic [11]. This type of logic,
allowing a third, ambiguous value in addition to true and false, was studied
by Mukaidono in 1972 [12], who introduced the uncertainty partial order, in
addition to the usual lattice partial order. This partial order turned out to be
very useful; see, for example, [3, 6]. It also plays an important role in the ternary
symmetry we are about to describe.

In 1995 Negulescu [13] introduced process spaces as abstract models of con-
current processes. Surprisingly, process spaces turned out to be special types of
ternary algebras. It is in process spaces that “ternary duality” exists. Similar
properties also hold in so-called linear logic, which has been used as another

J. Karhumäki et al. (Eds.): Theory Is Forever (Salomaa Festschrift), LNCS 3113, pp. 1–14, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

2 Janusz Brzozowski and Radu Negulescu

framework for representing concurrent processes, and has connections to Petri
nets [17]. This topic is outside the scope of the present paper.

The remainder of the paper is structured as follows. Section 2 illustrates
hazard detection using ternary algebra. We also recall some basic concepts from
lattice theory and summarize the properties of ternary algebras. Process spaces
are defined in Section 3. Ternary symmetry is next discussed in Section 4. In
Section 5 we show that each process space contains three isomorphic Boolean
algebras. Section 6 characterizes elements of a process space that are outside the
Boolean algebras, and Section 7 summarizes our results.

We assume that unary operations have precedence over binary operations.
For example, −x+−y denotes (−x) + (−y). Sequences of unary operations are
written without parentheses; for example,−/−x denotes−(/(−x)). Set inclusion
is denoted by ⊆ and proper inclusion, by ⊂. Proofs that are straightforward and
involve only elementary set theory are omitted.

2 Ternary Algebras

The logic values are 0 and 1, and a third value, denoted here by Φ, is used to rep-
resent an intermediate or uncertain signal. This idea was used by many authors,
but we mention here only Eichelberger’s 1965 ternary simulation algorithm [8]
and its later characterizations [6]. More information about hazard detection can
be found in a recent survey [4]. The following example illustrates the use of
ternary simulation to detect hazards in logic circuits.

Example 1. Consider the behavior of the circuit of Fig. 1(a) when its input x
changes from 0 to 1. Initially, x = 0, y = 1, and z = 0. After the transition,
x = 1, y = 0, and z = 0. Thus, z is not supposed to change during this transition.
If the inverter has a sufficiently large delay, however, for a short time both inputs
to the and gate may be 1, and there may be a short 1-pulse in z. Such a pulse
is undesirable, because it may cause an error in the computation.

In the first part of the ternary simulation, Algorithm A, we change the input
to Φ, which indicates that the input is first going through an intermediate, un-
certain value. See Fig. 1(b); the first two entries on each line illustrate Algorithm
A. The circuit is then analyzed in ternary algebra to determine which gates will
undergo changes; the outputs of the changing gates become Φ. In our example,
the inverter output becomes uncertain because its input is uncertain. Also, since
one input of the and gate is 1 and the other uncertain, z becomes Φ.

In the second part, Algorithm B, the input is changed to its final binary
value, and the circuit is again simulated in ternary algebra. Some gate outputs
that became Φ in Algorithm A will become binary, while others remain Φ. In our
example, both y and z become 0; see the last two entries in Fig. 1(b). If a gate
output has the same (binary) value in the initial state and also at the end of
Algorithm B, then that output is not supposed to change during the transition
in question. If, however, that output is Φ after Algorithm A is applied, then
we have detected a hazard , meaning that an undesired pulse may occur. This
happens to the output z. ��

Duality for Three: Ternary Symmetry in Process Spaces 3

NOT
AND

x
y1 0 0

1

0

0

1 1 0

NOT
AND

x
y1 0 0

1

0

0

1 0

(a)

(b)

z

z

Fig. 1. Circuit with hazard: (a) binary analysis (b) ternary analysis

We now recall some concepts from algebra. For more information about lat-
tices see [1, 7]. We use the following terminology. A semilattice [2] is an algebra
(S,�), where S is a set and � is an idempotent, commutative and associative
binary operation on S. We define the partial order �� on S by

x �� y ⇔ x � y = y.

A bisemilattice is an algebra (S,�,�) in which (S,�) and (S,�) are semilattices,

Table 1. Laws of de Morgan Algebras

M1 x � x = x M1′ x � x = x
M2 x � y = y � x M2′ x � y = y � x
M3 x � (y � z) = (x � y) � z M3′ x � (y � z) = (x � y) � z
M4 x � (x � y) = x M4′ x � (x � y) = x
M5 x � ⊥ = x M5′ x � � = x
M6 x � � = � M6′ x � ⊥ = ⊥
M7 x � (y � z) = (x � y) � (x � z) M7′ x � (y � z) = (x � y) � (x � z)
M8 −− x = x
M9 −(x � y) = −x � −y M9′ −(x � y) = −x � −y

i.e., laws M1–M3, M1′–M3′ of Table 1 hold. A bisemilattice has two partial orders
�� and ��, the latter defined by

x �� y ⇔ x � y = x.

If a bisemilattice satisfies the absorption laws M4 and M4′, then it is a lattice.
The two partial orders �� and �� then coincide, and are denoted by �. The
converse of � is denoted by �. The operations � and � are the join and meet of
the lattice, respectively. A lattice is bounded if it has greatest and least elements

4 Janusz Brzozowski and Radu Negulescu

	 (top) and ⊥ (bottom) satisfying M5, M6, M5′, M6′. A bounded lattice is
represented by (S,�,�,⊥,). A lattice satisfying the distributive laws M7 and
M7′ is distributive.

A de Morgan algebra is an algebra (S,�,�,−,⊥,), where (S,�,�,⊥,)
is a bounded distributive lattice, and − is a unary operation, called quasi-
complement , that satisfies M8 and de Morgan’s laws M9 and M9′.

A Boolean algebra is a de Morgan algebra (S,�,�,−,⊥,), which also sat-
isfies the complement laws:

x � −x = 	 x � −x = ⊥
A ternary algebra (S,�,�,−,⊥, Φ,) is a de Morgan algebra (S,�,�,−,⊥,)

with an additional constant Φ satisfying

T1 −Φ = Φ
T2 (x � −x) � Φ = x � −x T2′ (x � −x) � Φ = x � −x

For more information about ternary algebras the reader is referred to [5, 6,
9, 12]. Here, we mention only the uncertainty partial order and the subset-pair
representation of ternary algebras.

Figure 2(a) shows the lattice order � of the 3-element ternary algebra T3 =
({⊥, Φ,	},�,�,−,⊥, Φ,), and Fig. 2(b), its uncertainty partial order � [6,
12], where Φ represents the unknown or uncertain value, and ⊥ and 	 are the
known or certain values.

(a)

(b)
⊥

⊥

	

	

Fig. 2. Partial orders in T3: (a) � (b) �

For any x, y ∈ T3, the least upper bound of {x, y} in the partial order � can
be expressed as (x� y)� ((x� y)�Φ) [6]. We extend this to any ternary algebra
(S,�,�,−,⊥, Φ,) by defining the binary operation ∨ [3] as

x ∨ y = (x � y) � ((x � y) � Φ).

It is easily verified that (S,∨) is a semilattice. The semilattice partial order is

x � y ⇔ x ∨ y = y.

Duality for Three: Ternary Symmetry in Process Spaces 5

Let E be a nonempty set, and P, a collection of ordered pairs (X,X ′) of
subsets of E such that X ∪X ′ = E. For (X,X ′), (Y, Y ′) ∈ P, let

(X,X ′) � (Y, Y ′) = (X ∩ Y,X ′ ∪ Y ′), (1)

(X,X ′) � (Y, Y ′) = (X ∪ Y,X ′ ∩ Y ′), (2)

−(X,X ′) = (X ′, X). (3)

Let ⊥ = (E, ∅), Φ = (E,E), and 	 = (∅,E). Then (P,�,�,−,⊥, Φ,) is a subset-
pair algebra [5] if P is closed under �, �, and −, and contains the constants ⊥,
Φ, and 	. The following result was shown in [5, 9]:

Theorem 1. Every subset-pair algebra is a ternary algebra, and every ternary
algebra is isomorphic to a subset-pair algebra.

It is easy to verify that

(X,X ′) � (Y, Y ′)⇔ X ⊇ Y, and X ′ ⊆ Y ′, (4)

(X,X ′) ∨ (Y, Y ′) = (X ∪ Y,X ′ ∪ Y ′), (5)

(X,X ′) � (Y, Y ′)⇔ X ⊆ Y and X ′ ⊆ Y ′. (6)

3 Process Spaces

The material in this section is based on [14, 15]. The discussion of applications
of process spaces is beyond the scope of this paper, and we treat process spaces
only as mathematical objects. However, we do give a simple example to motivate
the reader.

Let E be any nonempty set; a process x over E is an ordered pair x = (X,X ′)
of subsets of E such that X ∪X ′ = E.

We refer to E as a set of executions. Several different examples of execution
sets have been used [14, 15]. For the purposes of this paper, however, we may
think of E as the set of all sequences of actions from some action universe U; thus
E = U∗. A process x = (X,X ′) represents a contract between a device and its
environment: the device guarantees that only executions from X occur, and the
environment guarantees that only executions from X ′ occur. Thus, X = E \X
is the set of executions in which the device violates the contract. Similarly, for
executions in X ′, the environment violates the contract. The condition X∪X ′ =
E, or equivalently X ∩ Y = ∅, means that the blame for violating the contract
can be assigned to either the device or the environment, but not both. The set
X is called the set of accessible executions of x, and X ′ is the set of acceptable
executions.

6 Janusz Brzozowski and Radu Negulescu

Example 2. Figure 3 (a) shows a symbol for a buffer, and Fig. 3 (b) shows a
sequential machine describing its behavior. The buffer starts in the state marked
by an incoming arrow. If it receives a signal on its input a, it moves to a new state.
It is expected to respond by producing a signal on its output b and returning
to the original state. Thus, the normal operation of the buffer consists of an
alternating sequence of a’s and b’s starting with a. The two states involved in
this normal operation are marked g, representing the fact that they are the goal
states of the process.

g g er
a

a bba,b a,b

(b)

a b

(a)

Fig. 3. Buffer process: (a) block diagram (b) behavior

It is possible that the environment of the buffer does not behave according to
the specified goal, and produces two consecutive a’s in the initial state. From the
point of view of the buffer, this environment behavior can be rejected as illegal;
hence the state diagram moves to a reject state marked r, and remains in that
state thereafter. It is also possible that the buffer malfunctions by producing b in
the initial state. This is a violation of the contract by the buffer, and the process
moves to the state labelled e; such executions have been called the escapes of
the process.

Let Lg be the set of all words taking the machine of Fig. 3 (b) to a state
marked g, and let Le and Lr be defined similarly. One verifies that Lg = (ab)∗(ε
∪ a), where ε is the empty word, Le = (ab)∗b(a ∪ b)∗, and Lr = (ab)∗aa(a ∪b)∗.
The buffer process is (X,X ′) = (Lg ∪ Le, Lg ∪ Lr). ��

The process space over E is denoted by PE, and it is the set of all processes
over E. Note that each set E defines a unique process space.

In constructing PE we must put each element of E in X or X ′ or both. Hence,
if E has cardinality n, then PE has cardinality 3n. The smallest process space has
three elements. If E = {1}, say, then the three processes are: ({1}, ∅), ({1}, {1}),
and (∅, {1}).

In every process space we identify three special elements: bottom, ⊥ = (E, ∅),
void , Φ = (E,E), and top, 	 = (∅,E).

Duality for Three: Ternary Symmetry in Process Spaces 7

Next, we define the main operations on processes. These operations are mo-
tivated by applications to concurrent systems, and are related to operations in
several theories of concurrency. For more details see [14, 15].

– Reflection, defined as in (3). Reflection permutes the roles of the device and
the environment. If a process x = (X,X ′) is the contract seen by the device,
then −x = (X ′, X) represents the same contract as seen by the environment.

– Refinement, defined as in (4). If x = (X,X ′), y = (Y, Y ′), and x � y,
then y is an acceptable substitute for x, because y accesses fewer executions
than x, i.e., its device obeys tighter constraints (Y ⊆ X), and accepts more
executions than x, i.e., its environment has weaker constraints (Y ′ ⊇ X ′).

– Product, written ×, is a binary operation such that

(X,X ′)× (Y, Y ′) = (X ∩ Y, (X ′ ∩ Y ′) ∪ (X ∩ Y)). (7)

Product models a system formed by two devices operating jointly. The sys-
tem’s accessible executions are those that are accessible to both components.
Its set of acceptable executions consists of the executions that are accept-
able to both components and those that must be avoided by one of the
components.

Refinement is a partial order which induces a lattice over a process space,
whose join is given by (1) and meet, by (2). Furthermore, this lattice has ⊥
and 	 as bounds. This, together with reflection, which is defined as in (3),
makes an arbitrary process space (PE,�,�,−,⊥, Φ,) a subset-pair algebra,
and, by Theorem 1, a ternary algebra. Reflection is an involution and it reverses
refinement. Thus

−− x = x, (8)

x � y ⇔ −x � −y. (9)

One verifies that (PE,×, Φ,) is a semilattice with identity Φ and greatest
element 	.

An example of a process space is shown in Fig. 4. Here E = {1, 2}, and
PE = P9 has nine elements. Its partial orders � and � are shown in the figure.
To simplify the notation, we denote {1, 2} simply by 12, etc.

4 Ternary Symmetry

Process spaces admit a ternary symmetry [14, 16] based on a unary operation,
called rotation (/), and defined by:

/x = (X ∪X ′, X), (10)

for all x = (X,X ′).

8 Janusz Brzozowski and Radu Negulescu

(a)

(12,12)

(12,)

(12,1) (12,2)

(1,2)(2,1)

(2,12) (1,12)

(,12)

(b)

(,12)

(1,12)

(2,12)

(12,12)

(12,1)

(12,2)

(12,) (1,2)(2,1)

Fig. 4. Partial orders in P9: (a) � (b) �

Proposition 1. For any processes x and y we have:

///x = x, (11)

x× y = //(/x � /y), (12)

−/x = //− x, /− x = −//x, (13)

/⊥ = Φ, /Φ = 	, /	 = ⊥. (14)

Proposition 1 shows that / is bijective, since it is a root of identity, and
therefore admits an inverse, namely //. Furthermore, Prop. 1 reveals that map
/ is an isomorphism of the semilattices (PE,×) and (PE,�).

The ternary symmetry brought out by Prop. 1 justifies an alternate repre-
sentation of processes in a process space as (set) triplets [13, 14], defined below.
For process x = (X,X ′), we also write x = (X1, X2, X3) where X1 = X \ X ′,
X2 = X ∩X ′, and X3 = X ′ \X .

Note that the entries in a set triplet “split” E in the following sense. If
x = (X1, X2, X3), then X1∩X2 = X1∩X3 = X2∩X3 = ∅ and X1∪X2∪X3 = E.
(This “split” is not a “partition” because some of the blocks might be empty.)

We redefine below the main operations on processes in the set triplet rep-
resentation. These definitions are equivalent to the definition on set pairs given
previously.

(X1, X2, X3)× (Y1, Y2, Y3) = ((X1 \ Y3) ∪ (Y1 \X3), X2 ∩ Y2, X3 ∪ Y3). (15)

(X1, X2, X3) � (Y1, Y2, Y3)⇔ X1 ⊇ Y1 ∧X3 ⊆ Y3. (16)

Note that there is no condition on X2 and Y2.

−(X1, X2, X3) = (X3, X2, X1). (17)

⊥ = (E, ∅, ∅), Φ = (∅,E, ∅), 	 = (∅, ∅,E). (18)

Rotation has a simpler form in the set triplet representation:

/(X1, X2, X3) = (X3, X1, X2). (19)

Duality for Three: Ternary Symmetry in Process Spaces 9

One also verifies that the operation // of double rotation, being the composition
of two single rotations, satisfies

//x = (X ′, X ∪X ′) (20)

and, equivalently,
//(X1, X2, X3) = (X2, X3, X1). (21)

Several new operations are defined using ternary symmetry. Each definition
relates two operations in a way similar to that between × and � in Prop. 1. For
completeness, we repeat (12).

Definition 1. For arbitrary processes x and y from process space PE

x× y = //(/x � /y),
x⊗ y = //(/x× /y),
x+ y = //(/x � /y),
x⊕ y = //(/x+ /y).

The refinement partial order � is related to the uncertainty partial order, as
shown below. This is remarkable because the notions of refinement and uncer-
tainty as formally defined here were motivated by totally different applications.

Proposition 2. For arbitrary processes x and y from process space PE

x � y ⇒ /x � /y.

5 Boolean Trios

Let E be any nonempty set and let P = PE be the process space on E. Let
(P,�,�,−,⊥, Φ,) be the process space viewed as a ternary algebra. Let QT be
the set of all elements comparable to Φ in P.

Theorem 2. The structure (QT ,�,�,−,⊥, Φ,) is a sub-ternary-algebra of
(P,�,�,−,⊥, Φ,).

Proof. It is easy to verify that QT is closed under the two binary operations,
and contains the three constants. Since de Morgan’s laws hold, we have x � y ⇔
−x � −y. In particular, x � Φ ⇔ −x � Φ, in view of T1. Hence QT is also
closed under −. ��

LetQM be the set of all the processes of P that are minimal in the uncertainty
partial order �. Since (X,X ′) � (Y, Y ′) if and only if X ⊆ Y and X ′ ⊆ Y ′,
a process x = (X,X ′) is minimal if and only if X ∩X ′ = ∅. Otherwise, if there is
a common element in X and X ′, we can remove it from X (or X ′), and obtain
a smaller process. Thus, if x ∈ QM , then x has the form x = (X,X), for some
X ⊆ E. Note that QM includes 	 and ⊥.

Let (P,�,�,−,⊥,) be the process space (P,�,�,−,⊥, Φ,) viewed as a
de Morgan algebra.

10 Janusz Brzozowski and Radu Negulescu

Theorem 3. The structure (QM ,�,�,−,⊥,) is a sub-de-Morgan-algebra of
(P,�,�,−,⊥,). Furthermore, (QM ,�,�,−,⊥,) is a Boolean algebra.

Proof. Let x, y be in QM . Then x = (X,X) and y = (Y, Y) for some X and
Y . Then x � y = (X ∪ Y,X ∩ Y) = (X ∪ Y,X ∪ Y), x � y = (X ∩ Y,X ∪ Y) =
(X ∩ Y,X ∩ Y), i.e., QM is closed under both binary operations. Furthermore,
−x = (X,X), and QM is also closed under −. We have already noted that QM

contains ⊥ and 	.
Laws M1–M9, and M1′–M7′, M9′ hold because they hold in P. Hence we

need only to verify the complement laws. We have x�−x = (X,X) � (X,X) =
(X ∪X,X ∩X) = (E, ∅) = ⊥. Similarly, x � −x = 	. ��

We now consider the set of all the processes in QT that are below Φ. Let
(P,�,�,−,⊥, Φ,) be a process space, and let QL = {x ∈ P | x � Φ}. If
x ∈ QL, then x has the form x = (E, X ′), for some X ′ ⊆ E. Note that QL

contains ⊥ and Φ, and that
/x = (X ′,E). (22)

Secondly, consider the set of all elements above Φ. Let QU = {x ∈ P | x � Φ}.
If x ∈ QU , then x = (X,E) for some X ⊆ E. Note that QL contains Φ and 	,
and that

/x = (X,X), (23)

for all x = (E, X ′) in QL.
Finally, recall that elements of QM have the form x = (X,X) and note that

/x = (E, X). (24)

If Q ⊆ E, we define /Q = {/q | q ∈ Q} and −Q = {−q | q ∈ Q}.
Proposition 3. /QL = QU , /QU = QM , and /QM = QL.

Proof. In view of (22)–(24), we have /QL ⊆ QU , /QU ⊆ QM , and /QM ⊆ QL.
Since ///x = x, it follows that QU = ///QU ⊆ //QM ⊆ /QL. Thus /QL = QU .
The other two equalities follow similarly. ��
Proposition 4. For x, y ∈ QL,

(a) x � −/x = Φ, x � −/x = ⊥,
(b) /(x � y) = /x � /y, /(x � y) = /x � /y,
(c) x � y = x⊗ y = x+ y, x � y = x× y = x⊕ y.

Theorem 4. (QL,�,�,−/,⊥, Φ) is a Boolean algebra with join �, meet �, com-
plement −/, least element ⊥ and greatest element Φ.

Proof. We verify that QL is closed under �,� and −/, and contains ⊥ and
Φ. Next we check that the laws of Boolean algebra hold for QL. Laws M1–
M7, M1′–M7′ hold in QL, since they hold in P. The complement laws hold by
Prop. 4 (a). The involution and de Morgan’s laws follow easily using the fact
that each element in QL is of the form x = (E, X ′). ��

Duality for Three: Ternary Symmetry in Process Spaces 11

Proposition 5. For x, y ∈ QU ,

(a) x � /− x = 	, x � /− x = Φ,
(b) /(x � y) = /x � /y, /(x � y) = /x � /y,
(c) x � y = x× y = x⊕ y, x � y = x+ y = x⊗ y.

Theorem 5. (QU ,�,�, /−, Φ,) is a Boolean algebra with join �, meet �, com-
plement /−, least element Φ and greatest element 	. Moreover, the algebras
(QL,�,�,−/,⊥, Φ) and (QU ,�,�, /−, Φ,) are isomorphic, an isomorphism be-
ing / : QL → QU .

Proof. By Prop. 1, / is a bijection. By Prop. 4 (b), / preserves � and �. Also
/(−/x) = /−(/x), showing that / maps complements correctly. Finally, /⊥ = Φ,
and /Φ = 	. ��
Proposition 6. For x, y ∈ QM ,

(a) x � −x = ⊥, x � −x = 	,
(b) /(x � y) = /x � /y, /(x � y) = /x � /y,
(c) x � y = x⊕ y = x+ y, x � y = x× y = x⊗ y.

Theorem 6. (QM ,�,�,−,	,⊥) is a Boolean algebra with join �, meet �, com-
plement −, least element 	 and greatest element ⊥. Moreover, (QU ,�,�,−, Φ,)
and (QM ,�,�,−/,	,⊥) are isomorphic, an isomorphism being / : QU → QM .

Proof. The first claim follows by Theorem 3 and duality in Boolean algebras.
Mapping / is a bijection, which behaves like an isomorphism with respect to
the binary operations because of Prop. 5 (b). For the unary operation, we have
/(/− x) = //− x = −(/x), as required. Finally, /Φ = 	 and /	 = ⊥. ��

In a similar fashion we verify the following:

Theorem 7. (QM ,�,�,−/,	,⊥) and (QL,�,�,−/,⊥, Φ) are isomorphic, an
isomorphism being / : QM → QL.

We refer to the three Boolean algebras of a process space as its Boolean trio.
The Hasse diagram for the partial order � within the Boolean algebras of the 27-
element process space P27 is shown in Fig. 5. Note that rotation of the Boolean
algebras is counterclockwise, whereas rotation of the complement operations in
the three algebras is clockwise, since we have −, /−, and //− = −/.

We close this section by showing that − is an isomorphism between QL and
the dual of QU .

Theorem 8. (QL,�,�,−/,⊥, Φ) and (QU ,�,�, /−,	, Φ) are isomorphic, an
isomorphism being − : QL → QU .

Proof. Since x � Φ⇔ −x � Φ, we have QU = −QL. Next, −(x� y) = −x�−y,
and −(x � y) = −x � −y. Also, −(−/x) = −− //x = /x = /− −x = /− (−x),
as required. Finally, −⊥ = 	, and −Φ = Φ. ��

12 Janusz Brzozowski and Radu Negulescu

(123,)

(123,1)

(123,2)

(123,3)

(123,12)

(123,13)

(123,23)

(123,123)

(13,123)

(12,123)

(1,123)

(2,123)

(3,123)

(,123)

(1,23)
(2,13)

(3,12)

(12,3)

(13,2)

(23,1)

(23,123)

A

B
C

D

E

F
G

H

I

J
K

L
M

N

O

P

Q

R

S
T

Y

Fig. 5. Boolean trio of P27

By duality of Boolean algebras, algebra (QU ,�,�, /−,	, Φ) is isomorphic to
(QU ,�,�, /−, Φ,).

Exercise. We now offer the readers an exercise to check their understanding
of the concepts presented. To simplify the notation, we introduce the following
symbols: A = (123, ∅), B = (123, 1), etc., as shown in Fig. 5. The reader who
evaluates the following expressions will be richly rewarded (example: /B = I):
/A, //H, −Y, P �G, //− I;
− /G, −/(Q�R), −Q�−P, /M, ///−H, −(I �J), //−H, −/I;
/O, Y � /M, P ⊕R, −/−A. ��

6 Ordered Tripartitions

We now consider elements x = (X,X ′) = (X1, X2, X3) that are outside the
Boolean trio. Let T be the set of all such elements; these are elements of P that
are incomparable to Φ and are not minimal in the partial order �.

Proposition 7. T = {(X,X ′) | ∅ ⊂ X,X ′ ⊂ E, and X ∩X ′ �= ∅}.
We refer to partitions of a set into three blocks as tripartitions of the set. An

ordered tripartition of E is an ordered triple (X1, X2, X3) of subsets of E, such
that {X1, X2, X3} is a tripartition of E.

Proposition 8. T = {(X1, X2, X3) | {X1, X2, X3} is a tripartition of E}.
A sextet is an algebra (S6, /,−), where S6 is a set of six elements, and / and −

are unary operations satisfying ///x = x, −−x = x, and −/x = //−x, for all x ∈
S6. An example of a sextet is shown in Fig. 6(a). Here S6 = {0, 1, . . . , 5}, /x =

Duality for Three: Ternary Symmetry in Process Spaces 13

x+2 (mod 6) and −x = 5−x, where the − on the right-hand side is subtraction
of integers. Figure 6(b) shows another example of a sextet. Here, S6 consists
of all the ordered tripartitions generated by the tripartition {{1, 4}, {2}, {3}}
of E = {1, 2, 3, 4} under the two unary operations / and −, the rotation and
reflection of triplets.

(a) (b)

0

1

2 3

4

5 (14,2,3)

(2,3,14)

(3,2,14)

(2,14,3)

(14,3,2)

/

/

/

/

/

/

−

−

−

(3,14,2)

/ /

/
/ /

/

−

−

−

Fig. 6. Illustrating sextets

Proposition 9. T is a disjoint union of sextets generated by all tripartitions
of E.

If E has cardinality n, there are 3n elements in PE. In each Boolean algebra
of the trio there are 2n elements, for a total of 3× (2n − 1) elements in the trio.
Thus there are 3n−3× (2n−1) elements in T . For n = 1 and n = 2, T is empty.
For n = 3, there are six elements in T . These belong to the sextet generated by
the tripartition {{1}, {2}, {3}}. For n = 4, there are 36 elements belonging to
the sextets generated by the six tripartitions {{1, 2}, {3}, {4}}, {{1, 3}, {2}, {4}},
{{1, 4}, {2}, {3}}, {{1}, {2, 3}, {4}}, {{1}, {2, 4}, {3}}, {{1}, {2}, {3, 4}}.

7 Conclusions

We have demonstrated a ternary symmetry similar to duality. We have shown
that every process space consists of a trio of Boolean algebras and a disjoint
union of sextets generated by all tripartitions of the underlying set.

Acknowledgment

This research was supported by Grants No. OGP0000871 and RGPIN119122
from the Natural Sciences and Engineering Research Council of Canada.

14 Janusz Brzozowski and Radu Negulescu

References

1. Balbes, R., Dwinger, P.: Distributive Lattices, University of Missouri Press (1974)
2. Brzozowski, J. A.: De Morgan Bisemilattices. Proc. 30th Int. Symp. on Multiple-

Valued Logic, IEEE Comp. Soc. (2000) 173–178
3. Brzozowski, J. A.: Involuted Semilattices and Uncertainty in Ternary Algebras.

Int. J. Algebra and Comput. (2004) to appear
4. Brzozowski, J. A., Ésik, Z., Iland, Y.: Algebras for hazard detection. Beyond Two:

Theory and Applications of Multiple-Valued Logic, Fitting, M., Or�lowska, E., eds.,
Physica-Verlag, (2003) 3–24

5. Brzozowski, J. A., Lou, J. J., Negulescu, R.: A Characterization of Finite Ternary
Algebras. Int. J. Algebra and Comput. 7 (6) (1997) 713–721

6. Brzozowski, J. A., Seger, C-J. H.: Asynchronous Circuits, Springer-Verlag (1995)
7. Davey, B. A., Priestley, H. A.: Introduction to Lattices and Order, Cambridge

University Press (1990)
8. Eichelberger, E. B.: Hazard detection in combinational and sequential circuits.

IBM J. Res. and Dev. 9 (1965) 90–99
9. Ésik, Z.: A Cayley Theorem for Ternary Algebras. Int. J. Algebra and Comput. 8

(3) (1998) 311–316
10. Goto, M.: Application of Three-Valued Logic to Construct the Theory of Relay

Networks (in Japanese). Proc. IEE, IECE, and I. of Illum. E. of Japan (1948)
11. Kleene, S. C.: Introduction to Metamathematics, North-Holland (1952)
12. Mukaidono, M.: On the B-Ternary Logical Function—A Ternary Logic Considering

Ambiguity. Trans. IECE, Japan, 55–D (6) (1972) 355–362. In English in Systems,
Computers, Controls 3 (3) (1972) 27–36

13. Negulescu, R.: Process Spaces. Technical Report CS-95-48, Dept. of Comp. Science,
University of Waterloo, ON, Canada (1995)

14. Negulescu, R.: Process Spaces and Formal Verification of Asynchronous Circuits.
PhD Thesis, Dept. of Comp. Science, University of Waterloo, ON, Canada (1998)

15. Negulescu, R.: Process Spaces. Proc. 11th Int. Conf. on Concurrency Theory (2000)
196–210

16. Negulescu, R.: Generic Transforms on Incomplete Specifications of Asynchronous
Interfaces. Proc. 19th Conf. on Math. Found. of Programming Semantics (2003)

17. Troelstra, A. S.: Lectures on Linear Logic, Center for the Study of Language and
Information, Stanford University, Stanford, CA (1992)

Mathematical Proofs at a Crossroad?

Cristian S. Calude1 and Solomon Marcus2

1 University of Auckland, New Zealand
cristian@cs.auckland.ac.nz

2 Romanian Academy, Romania
solomon.marcus@imar.ro.

Abstract. For more than 2000 years, from Pythagoras and Euclid to
Hilbert and Bourbaki, mathematical proofs were essentially based on
axiomatic-deductive reasoning. In the last decades, the increasing length
and complexity of many mathematical proofs led to the expansion of
some empirical, experimental, psychological and social aspects, yester-
day only marginal, but now changing radically the very essence of proof.
In this paper, we try to organize this evolution, to distinguish its differ-
ent steps and aspects, and to evaluate its advantages and shortcomings.
Axiomatic-deductive proofs are not a posteriori work, a luxury we can
marginalize nor are computer-assisted proofs bad mathematics. There is
hope for integration!

1 Introduction

From Pythagoras and Euclid to Hilbert and Bourbaki, mathematical proofs were
essentially based on axiomatic-deductive reasoning. In the last decades, the in-
creasing length and complexity of many mathematical proofs led to the expan-
sion of some empirical, experimental, psychological and social aspects, yesterday
only marginal, but now changing radically the very essence of proof. Computer-
assisted proofs and the multiplication of the number of authors of a proof became
in this way unavoidable.

In this paper, we try to organize this evolution, to distinguish its different
steps and aspects and to evaluate its advantages and shortcomings. Various
criticisms of this evolution, particularly, Ian Stewart’s claim according to which
the use of computer programs in a mathematical proof makes it as ugly “as a
telephone directory” while purely axiomatic-deductive proofs are “beautiful like
Tolstoy’s War and Peace”, will be discussed.

As axiomatic-deductive proofs, computer-assisted proofs may oscillate be-
tween ugliness and beauty. The elegance of a computer-program may rival the
beauty of a piece of poetry, as the author of the Art of Computer Programming
convinced us; however, this may not exclude the possibility that a computer-
program assisting a proof hides a central idea or obscures the global aspect of
the proof. In particular, the program assisting a proof may not be itself “proven
correct”, as it happened in the proof of the four-color problem, even in the latest,
improved 1996 variant.

J. Karhumäki et al. (Eds.): Theory Is Forever (Salomaa Festschrift), LNCS 3113, pp. 15–28, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

16 Cristian S. Calude and Solomon Marcus

Computer-assisted proofs are to usual axiomatic-deductive proofs what (high-
school) algebraic approaches are to arithmetic approaches or what analytical ap-
proaches are to direct geometric approaches. Arithmetic and intuitive geometry
make children’s brains more active, but algebra and analytic geometry, leading
to routine and general formulas, diminish the intellectual effort and free their
brains for new, more difficult problems. Obviously, each of these approaches has
advantages and shortcomings, its beauty and ugliness; they are not antitheti-
cal, but complementary. Axiomatic-deductive proofs are not a posteriori work,
a luxury we can marginalize nor are computer-assisted proofs bad mathematics.
There is hope for integration!

2 Proofs in General

Proofs are used in everyday life and they may have nothing to do with mathe-
matics. There is a whole field of research, at the intersection of logic, linguistics,
law, psychology, sociology, literary theory etc., concerning the way people argue:
argumentation theory. Sometimes, this is a subject taught to 15 or 16 year-old
students.

In the “Oxford American Dictionary” [16] we read:

Proof: 1. a fact or thing that shows or helps to show that something is true

or exists; 2. a demonstration of the truth of something, “in proof of my state-

ment”; 3. the process of testing whether something is true or good or valid,

“put it to the proof”. To prove: to give or be proof of; to establish the validity

of; to be found to be, “it proved to be a good theory”; to test or stay out. To

argue: 1. to express disagreement, to exchange angry words; 2. to give reasons

for or against something, to debate; 3. to persuade by talking, “argued him

into going”; 4. to indicate, “their style of living argues that they are well off”.

Argument: 1. a discussion involving disagreement, a quarrel; 2. a reason put

forward; 3. a theme or chain of reasoning.

In all these statements, nothing is said about the means used “to show or help
to show that something is true or exists”, about the means used “in the process
of testing whether something is true or good or valid”. In argumentation theory,
various ways to argue are discussed, deductive reasoning being only one of them.
The literature in this respect goes from classical rhetorics to recent developments
such as [28]. People argue by all means. We use suggestions, impressions, emo-
tions, logic, gestures, mimicry, etc.

What is the relation between proof in general and proof in mathematics?
It seems that the longer a mathematical proof is, the higher the possibility to
contain elements usually belonging to non-mathematical proofs. We have in view
emotional, affective, intuitive, social elements related to fatigue, memory gaps,
etc. Long proofs are not necessarily computational; the proof of Fermat’s theorem
and the proof of Bieberbach’s conjecture did not use computer programs, but
they paid a price for their long lengths.

Mathematical Proofs at a Crossroad? 17

3 From Proofs to Mathematical Proofs

Why did mathematical proofs, beginning with Thales, Pythagoras and Euclid,
till recently, use only deductive reasoning? First of all, deduction, syllogistic
reasoning is the most visible aspect of a mathematical proof, but not the only
one. Observation, intuition, experiment, visual representations, induction, anal-
ogy and examples have their role; some of them belong to the preliminary steps,
whose presence is not made explicit, but without which proofs cannot be con-
ceived. As a matter of fact, neither deduction, nor experiment could be com-
pletely absent in a proof, be it the way it was conceived in Babylonian mathemat-
ics, predominantly empirical, or in Greek mathematics, predominantly logical.
The problem is one of proportion. In the 1970s, for the first time in the history
of mathematics, empirical-experimental tools, under the form of some computer
programs, have penetrated massively in mathematics and led to a solution of
the four-color problem (4CP), a solution which is still an object of debate and
controversy, see Appel and Haken [1], Tymoczko [39], Swart [37], Marcus [27],
and A. Calude [10].3

Clearly, any proof, be it mathematical or not, is a very heterogeneous process,
where different ingredients are involved in various degrees. The increasing role of
empirical-experimental factors may recall the Babylonian mathematics, with the
significant difference that the deductive component, today impressive, was then
very poor. But what is the difference between ‘proof’ and ‘mathematical proof’?
The difficulty of this question is related to the fact that proofs which are not
typically mathematical may occur in mathematics too, while some mathematical
reasonings may occur in non-mathematical contexts. Many combinatorial real-
life situations require a mathematical approach, while games like chess require
deductive thinking (although chess thinking seems to be much more than de-
duction). In order to identify the nature of a mathematical proof we should first
delimit the idea of a ‘mathematical statement’, i.e. a statement that requires a
mathematical proof. Most statements in everyday life are not of this type. Even
most statements of the type ‘if . . . , then . . . ’ are not mathematical statements.
At what moment does mathematics enter the scene? The answer is related to
the conceptual status of the involved terms and predicates. Usually, problems
raised by non-mathematicians are not yet mathematical problems, they may be
farther or nearer to this status. The problem raised to Kepler, about the densest
packing, in a container, of some apples of similar dimensions, was very near to
a mathematical one and it was easy to find its mathematical version. The task
was more difficult for the 4CP, where things like ‘map’, ‘colors’, ‘neighbor’, and
‘country’ required some delicate analysis until their mathematical models were
identified. On the other hand, a question such as ‘do you love me?’ still remains
far from a mathematical modelling process.

3 We have discussed in detail this issue in a previous article [11].

18 Cristian S. Calude and Solomon Marcus

4 Where Does the Job of Mathematicians Begin?

Is the transition from statements in general to mathematical statements the job
of mathematicians? Mathematicians are divided in answering this question. Hugo
Steinhaus’s answer was definitely yes, Paul Erdös’s answer was clearly negative.
The former liked to see in any piece of reality a potential mathematical problem,
the latter liked to deal with problems already formulated in a clear mathematical
language. Many intermediate situations are possible, and they give rise to a whole
typology of mathematicians. Goethe’s remark about mathematicians’ habit of
translating into their own language what you tell them and making in this way
your question completely hermetic refers just to this transition, sometimes of
high difficulty.

If in mathematical research both above attitudes are interesting, useful and
equally important, in the field of mathematical education of the general public
the yes attitude seems more important than the negative one and deserves prior-
ity. The social failure of mathematics to be recognized as a cultural enterprise is
due, to a large extent, to the insufficient attention paid to its links to other fields
of knowledge and creativity. This means that, in general mathematical education,
besides the scenario with definitions-axioms-lemmas-theorems-proofs-corollaries-
examples-applications we should consider, with at least the same attention, the
scenario stressing problems, concepts, examples, ideas, motivations, the histor-
ical and cultural context, including links to other fields and ways of thinking.
Are these two scenarios incompatible? Not at all. It happens that the second
scenario was systematically neglected; but the historical reasons for this mistake
will not be discussed here (see more in [29, 30]).

Going back to proof, perhaps the most important task of mathematical ed-
ucation is to explain why, in many circumstances, informal statements of prob-
lems and informal proofs are not sufficient; then, how informal statements can
be translated into mathematical ones. This task is genuinely related to the ex-
planation of what is the mathematical way of thinking, in all its variants: combi-
natorial, deductive, inductive, analogical, metaphorical, recursive, algorithmic,
probabilistic, infinite, topological, binary, triadic, etc., and, above all, the step-
by-step procedure leading to the need to use some means transcending the nat-
ural language (artificial symbols of various types and their combinations).

5 Proofs: From Pride to Arrogance

With Euclid’s Elements, for a long time taken to be a model of rigor, mathe-
maticians became proud of their science, claimed to be the only one giving the
feeling of certainty, of complete confidence in its statements and ways of arguing.
Despite some mishaps occurring in the 19th century and in the first half of the
20th century, mathematicians continued to trust in axiomatic-deductive rigor,
with the improvements brought by Hilbert’s ideas on axiomatics and formaliza-
tion. With Bourbaki’s approach, towards the middle of the 20th century, some
mathematicians changed pride into arrogance, imposing a ritual excluding any

Mathematical Proofs at a Crossroad? 19

concession to non-formal arguments. ‘Mathematics’ means ‘proof’ and ‘proof’
means ‘formal proof’, is the new slogan.

Depuis les Grecs, qui dit Mathématique, dit démonstration

is Bourbaki’s slogan, while Mac Lane’s [25] austere doctrine reads

If a result has not yet been given valid proof, it isn’t yet mathematics: we
should strive to make it such.

Here, the proof is conceived according to the standards established by Hilbert,
for whom a proof is a demonstrative text starting from axioms and where each
step is obtained from the preceding ones, by using some pre-established explicit
inference rules:

The rules should be so clear, that if somebody gives you what they claim
is a proof, there is a mechanical procedure that will check whether the
proof is correct or not, whether it obeys the rules or not.

And according to Jaffe and Quinn [20]

Modern mathematics is nearly characterized by the use of rigorous proofs.
This practice, the result of literally thousands of years of refinement, has
brought to mathematics a clarity and reliability unmatched by any other
science.

This is a linear-growth model of mathematics (see Stöltzner [36]), a process
in two stages. First, informal ideas are guessed and developed, conjectures are
made, and outlines of justifications are suggested. Secondly, conjectures and
speculations are tested and corrected; they are made reliable by proving them.
The main goal of proof is to provide reliability to mathematical claims. The act
of finding a proof often yields, as a by-product, new insights and possibly unex-
pected new data. So, by making sure that every step is correct, one can tell once
and for all whether a theorem has been proved. Simple! A moment of reflection
shows that the case may not be so simple. For example, what if the “agent” (hu-
man or computer) checking a proof for correctness makes a mistake (as pointed
out by Lakatos [24], agents are fallible)? Obviously, another agent has to check
that the agent doing the checking did not make any mistake. Some other agent
will need to check that agent, and so on. Eventually either the process continues
unendingly (an unrealistic scenario?), or one runs out of agents who could check
the proof and, in principle, they could all have made a mistake! Finally, the
linear-growth model is built on an asymmetry of proof and conjecture: Posing
the latter does not necessarily involve proof.

The Hilbert-Bourbaki model has its own critics, some from outside mathe-
matics such as Lakatos [24]

. . . those who, because of the usual deductive presentation of mathemat-
ics, come to believe that the path of discovery is from axiom and/or
definitions to proofs and theorems, may completely forget about the pos-
sibility and importance of naive guessing

20 Cristian S. Calude and Solomon Marcus

some from eminent mathematicians as Atiyah [2]:

[20] present a sanitized view of mathematics which condemns the subject
to an arthritic old age. They see an inexorable increase in standards and
are embarrassed by earlier periods of sloppy reasoning. But if mathemat-
ics is to rejuvenate itself and break new ground it will have to allow for
the exploration of new ideas and techniques which, in their creative phase,
are likely to be dubious as in some of the great eras of the past. Perhaps
we now have high standards of proof to aim at but, in the early stages
of new developments, we must be prepared to act in more buccaneering
style.

Atiyah’s point meets Lakatos’s [24] views

. . . informal, quasi-empirical mathematics does not grow through a mo-
notonous increase of the number of indubitably established theorems, but
through the incessant improvement of guesses by speculation and criti-
cism, by the logic of proof and refutation

and is consistent with the idea that the linear-growth model tacitly requires a
‘quasi-empirical’ ontology, as noted by Hirsch in his contribution to the debate
reported in [2]:

For if we don’t assume that mathematical speculations are about ‘reality’
then the analogy with physics is greatly weakened—and there is no rea-
son to suggest that a speculative mathematical argument is a theory of
anything, any more than a poem or novel is ‘theoretical’.

6 Proofs: From Arrogance to Prudence

It is well-known that the doubt appeared in respect to the Hilbert-Bourbaki
rigor was caused by Gödel’s incompleteness theorem,4 see, for instance, Kline’s
Mathematics, the Loss of Certainty [21]. It is not by chance that a similar title
was used later by Ilya Prigogine in respect to the development of physics. So,
arrogance was more and more replaced by prudence. All rigid attitudes, based
on binary predicates, no longer correspond to the new reality, and they should be
considered ‘cum grano salis’. The decisive step in this respect was accomplished
by the spread of empirical-experimental factors in the development of proofs.
4 The result has generated a variety of reactions, ranging from pessimism (the final,

definite failure of any attempt to formalise all of mathematics) to optimism (a guar-
antee that mathematics will go on forever) or simple dismissal (as irrelevant for
the practice of mathematics). See more in Barrow [4], Chaitin [12] and Rozenberg
and Salomaa [34]. The main pragmatical conclusion seems to be that ‘mathematical
knowledge’, whatever this may mean, cannot solely be derived only from some fixed
rules. Then, who validates the ‘mathematical knowledge’? Wittgenstein’s answer
was that the acceptability ultimately comes from the collective opinion of the social
group of people practising mathematics.

Mathematical Proofs at a Crossroad? 21

7 Assisted Proofs Vs. Long Proofs, or from Prudence to
Humility

The first major step was realized in 1976, with the discovery, using a massive
computer computation, of a proof of the 4CP. This event should be related to
another one: the increasing length of some mathematical proofs. Obviously, the
length l(p(s)) of the proof p(s) of the statement s should be appreciated in
respect to the length l(s) of s. There is a proposal to require the existence of
a strictly positive constant k such that, for any reasonable theorem, the ratio
l(p(s))/l(s) is situated between 1/k and k. But the existence of such a k may
remain an eternal challenge.

In the past, theorems with too long a statement were very rare. Early ex-
amples of this type can be found in Apollonius’s Conica written some time
after 200 BC. More recent examples include some theorems by Arnaud Denjoy,
proved in the first decades of the 20th century, and Jordan’s theorem (1870)
concerning the way a simple closed curve c separates the plane in two domains
whose common frontier is c. A strong trend towards long proofs appears in the
second half of the 20th century. We exclude here the artificial situation when
theorems with long statements and long proofs can be decomposed into several
theorems, with normal lengths. We refer to statements having a clear meaning,
whose unity and coherence are lost if they are not maintained in their initial
form. The 4CP is just of this type. Kepler’s conjecture is of the same type and
so are Fermat’s theorem, Poincaré’s conjecture and Riemann’s hypothesis. What
about the theorem giving the classification of finite simple groups? In contrast
with the preceding examples, in this case the statement of the theorem is very
long. It may be interesting to observe that some theorems which are in complete
agreement with our intuition, like Jordan’s and Kepler’s, require long proofs,
while some other theorems, in conflict with our intuition, such as the theorem
asserting the existence of three domains in the plane having the same frontier,
have a short proof. Ultimately, everything depends on the way the mathematical
text is segmented in various pieces.

The proof of the theorem giving the typology of the finite simple groups re-
quired a total of about fifteen thousand pages, spread in five-hundred separate
articles belonging to about three-hundred different authors (see Conder [15]).
But Serre [31] is still waiting for experts to check the claim by Aschbacher and
Smith to have succeeded filling in the gap in the proof of the classification theo-
rem, a gap already discovered in 1980 by Daniel Gorenstein. The gap concerned
that part which deals with ‘quasi-thin’ groups. Despite this persisting doubt,
most parts of the global proof were already published in various prestigious jour-
nals. The ambition of rigor was transgressed by the realities of mathematical life.
Moreover, while each author had personal control of his own contribution (ex-
cepting the mentioned gap), the general belief was that the only person having
a global, holistic representation and understanding of this theorem was Daniel
Gorenstein, who unfortunately died in 1992. So, the classification theorem is still
looking for its validity and understanding.

22 Cristian S. Calude and Solomon Marcus

The story of the classification theorem points out the dramatic fate of some
mathematical truths, whose recognition may depend on sociological factors which
are no longer under the control of the mathematical community. This situation
is not isolated. Think of Fermat’s theorem, whose proof (by Wiles) was checked
by a small number of specialists in the field, but the fact that here we had several
‘Gorensteins’, not only one, does not essentially change the situation.

How do exceedingly long proofs compare with assisted proofs? In 1996 Robert-
son, Sanders, Seymour and Thomas [32] offered a simpler proof of the 4CP. They
conclude with the following interesting comment (p. 24):

We should mention that both our programs use only integer arithmetic,
and so we need not be concerned with round–off errors and similar dan-
gers of floating point arithmetic. However, an argument can be made that
our “proof” is not a proof in the traditional sense, because it contains
steps that can never be verified by humans. In particular, we have not
proved the correctness of the compiler we compiled our programs on, nor
have we proved the infallibility of the hardware we ran our programs on.
These have to be taken on faith, and are conceivably a source of error.
However, from a practical point of view, the chance of a computer er-
ror that appears consistently in exactly the same way on all runs of our
programs on all the compilers under all the operating systems that our
programs run on is infinitesimally small compared to the chance of a
human error during the same amount of case–checking. Apart from this
hypothetical possibility of a computer consistently giving an incorrect an-
swer, the rest of our proof can be verified in the same way as traditional
mathematical proofs. We concede, however, that verifying a computer
program is much more difficult than checking a mathematical proof of
the same length.5

Knuth [22] p. 18 confirms the opinion expressed in the last lines of the pre-
vious paragraph:

. . . program–writing is substantially more demanding than book–writing.
Why is this so? I think the main reason is that a larger attention span is
needed when working on a large computer program than when doing other
intellectual tasks. . . . Another reason is . . . that programming demands
a significantly higher standard of accuracy. Things don’t simply have to
make sense to another human being, they must make sense to a computer.

And indeed, Knuth compared his TEX compiler (a document of about 500 pages)
with Feit and Thompson’s [17] theorem that all simple groups of odd order
are cyclic. He lucidly argues that the program might not incorporate as much
creativity and “daring” as the proof of the theorem, but they come even when
compared on depth of detail, length and paradigms involved. What distinguishes
the program from the proof is the “verification”: convincing a couple of (human)
experts that the proof works in principle seems to be easier than making sure that
5 Our emphasis.

Mathematical Proofs at a Crossroad? 23

the program really works. A demonstration that there exists a way to compile
TEX is not enough! Hence Knuth’s warning: “Beware of bugs in the above code:
I have only proved it correct, not tried it.”

It is just the moment to ask, together with R. Graham: “If no human being
can ever hope to check a proof, is it really a proof?” Continuing this question, we
may ask: What about the fate of a mathematical theorem whose understanding is
in the hands of only a few persons? Let us observe that in both cases discussed
above (4CP and the classification theorem) it is not only the global, holistic
understanding under question, but also its local validity.

Another example of humility some eminent mathematicians are forced to
adopt with respect to yesterday’s high exigency of rigor was given recently by
one of the most prestigious mathematical journals, situated for a long time at
the top of mathematical creativity: Annals of Mathematics. We learn from Karl
Sigmund [35] that the proof proposed by Thomas Hales in August 1998 and the
corresponding joint paper by Hales and Ferguson confirming Kepler’s conjecture
about the densest possible packing of unit spheres into a container, was accepted
for publication in the Annals of Mathematics,

but with an introductory remark by the editors, a disclaimer as it were,
stating that they had been unable to verify the correctness of the 250-page
manuscript with absolute certainty.

The proof is so long and based to such an extent on massive computations, that
the platoon of mathematicians charged with the task of checking it ran out of
steam. Robert MacPherson, the Annals’ editor in charge of the project, stated
that “the referees put a level of energy into this that is, in my experience, un-
precedented. But they ended up being only 99 percent certain that the proof was
correct”. However, not only the referees, the author himself, Thomas Hales, ‘was
exhausted’, as Sigmund observes. He was advised to re-write the manuscript: he
didn’t, but instead he started another project, ‘Formal Proof of Kepler’ (FPK), a
project which puts theorem-verification on equal footing with Knuth’s program-
verification. Programming a machine to check human reasoning gives a new type
of insight which has its own kind of beauty. Here is the bitter-ironical comment
by Sigmund:

After computer-based theorem-proving, this is the next great leap forward:
computer-based proof checking. Pushed to the limit, this would seem to
entail a self-referential loop. Maybe the purists who insist that a proof is
a proof if they can understand it are right after all. On the other hand,
computer-based refereeing is such a promising concept, for reviewers,
editors, and authors alike, that it seems unthinkable that the community
will not succumb to the temptation.

So, what is the perspective? It appears that FPK will require 20 man-years
to check every single step of Hales’ proof. “If all goes well, we then can be 100
percent certain”, concludes Sigmund ([35], p. 67).

24 Cristian S. Calude and Solomon Marcus

Let us recall that Perelman’s recent proof of Poincaré’s conjecture6 is still
being checked at MIT (Cambridge) and IHES (Paris) and who knows how long
this process will be? We enter a period in which mathematical assessment will
increase in importance and will use, in its turn, computational means. The job
of an increasing number of mathematicians will be to check the work of other
mathematicians. We have to learn to reward this very difficult work, to pay it
at its correct value.

One could think that the new trend fits the linear–growth model: all experi-
ments, computations and simulations, no matter how clever and powerful, belong
to and are to stay at the first stage of mathematical research where informality
and guessing are dominant. This is not the case. Of course, some automated
heuristics will belong only to the first stage. The shift is produced when a large
part of the results produced by computing experiments are transferred to the
second stage; they no longer only develop the intuition, they no longer only build
hypotheses, but they assist the very process of proof, from discovery to checking,
they create a new type of environment in which mathematicians can undertake
mathematical research.

For some a proof including computer programs is like a telephone directory,
while a human proof may compete with a beautiful novel. This analogy refers to
the exclusive syntactic nature of a computer-based proof (where we learn that the
respective proof is valid, but we may not (don’t) understand why), contrasting
with the attention paid to the semantic aspect, to the understanding process,
in the traditional proofs, exclusively made by humans.7 The criticism implied
by this analogy, which is very strong in René Thom’s writings, is not always
motivated. In fact, an ‘elegant’ program8 may help the understanding process
of mathematical facts in a completely new way. We confine ourselves to a few
examples only:

. . . if one can program a computer to perform some part of mathematics,
then in a very effective sense one does understand that part of mathe-
matics (G. Tee [38])

If I can give an abstract proof of something, I’m reasonably happy. But if
I can get a concrete, computational proof and actually produce numbers
I’m much happier. I’m rather an addict of doing things on computer,
because that gives you an explicit criterion of what’s going on. I have a
visual way of thinking, and I’m happy if I can see a picture of what I’m
working with (J. Milnor, [7])

. . . computer-based proofs are often more convincing than many standard
proofs based on diagrams which are claimed to commute, arrows which

6 Mathematicians familiar with Perelman’s work expect that it will be difficult to
locate any substantial mistakes, cf. Robinson [33].

7 The conjugate pair rigor-meaning deserves to be reconsidered, cf. Marcus [26].
8 Knuth’s concept of treating a program as a piece of literature, addressed to human

beings rather than to a computer; see [23].

Mathematical Proofs at a Crossroad? 25

are supposed to be the same, and arguments which are left to the reader
(J.-P. Serre [31])

. . . the computer changes epistemology, it changes the meaning of “to
understand.” To me, you understand something only if you can program
it. (G. Chaitin [14])

It is the right moment to reject the idea that computer-based proofs are nec-
essarily ugly and opaque not only to being checked for their correctness, but also
to being understood in their essence.

Finally, do axiomatic-deductive proofs remain an a posteriori work, a luxury
we can marginalize? When asked whether “when you are doing mathematics,
can you know that something is true even before you have the proof?”, Serre
([31], p. 212) answers: “Of course, this is very common”. But he adds: “But one
should distinguish between the genuine goal [. . .] which one feels is surely true,
and the auxiliary statements (lemmas, etc.), which may well be intractable (as
happened to Wiles in his first attempt) or even downright false [. . .].”

8 A Possible Readership Crisis and the Globalization of
the Proving Process

Another aspect of very long (human or computer-assisted) proofs is the risk of
finding no competent reader for them, no professional mathematician ready to
spend a long period to check them. This happened with the famous Bieberbach
conjecture. In 1916, L. Bieberbach conjectured a necessary condition on an ana-
lytic function to map the unit disk injectively to itself. The statement concerns
the (normalised) Taylor coefficients an of such a function (a0 = 0, a1 = 1): it
then states that |an| is at most n, for any positive integer n. Various mathe-
maticians succeeded in proving the required inequality for particular values of
n, but not for every n. In March 1984, Louis de Branges (from Purdue Univer-
sity, Lafayette) claimed a proof, but nobody trusted him, because previously he
made wrong claims for other open problems. Moreover, nobody in USA agreed
to read his 400-pages manuscript to check his proof, representing seven years
of hard work. The readership crisis ended when Louis de Branges proposed to
the Russian mathematician I. M. Milin that he check the proof; Milin was the
author of a conjecture implying Bieberbach’s conjecture. De Branges travelled
to Leningrad, where after a period of three months of confrontation with a team
formed by Milin and two other Russian mathematicians, E. G. Emelianov and
G. V. Kuzmina, they all reached the conclusion that various mistakes existing in
the proof were all benign. Stimulated by this fact, two German mathematicians,
C. F. Gerald and C. Pommerenke (Technical University, Berlin) succeeded in
simplifying De Branges’s proof.

This example is very significant for the globalization of mathematical re-
search, a result of the globalization of communication and of international co-
operation. It is no exaggeration to say that mathematical proof has now a global
dimension.

26 Cristian S. Calude and Solomon Marcus

9 Experimental Mathematics or the Hope for It

The emergence of powerful mathematical computing environments such as Math-
ematica, MathLab, or Maple, the increasing availability of powerful (multi-
processor) computers, and the omnipresence of the Internet allowing mathe-
maticians to proceed heuristically and ‘quasi-inductively’, have created a blend
of logical and empirical–experimental arguments which is called “quasi–empirical
mathematics” (by Tymoczko [39], Chaitin [13]) or “experimental mathematics”
(Borwein, Bailey [8], Borwein, Bailey, Girgensohn [9]). Mathematicians increas-
ingly use symbolic and numerical computation, visualisation tools, simulation
and data–mining. New types of proofs motivated by the experimental “ideol-
ogy” have appeared. For example, the interactive proof (see Goldwasser, Micali,
Rackoff [18], Blum [5]) or the holographic proof (see Babai [3]). And, of course,
these new developments have put the classical idea of axiomatic-deductive proof
under siege (see [11] for a detailed discussion).

Two programatic ‘institutions’ are symptomatic for the new trend: the Cen-
tre for Experimental and Constructive Mathematics (CECM),9 and the journal
Experimental Mathematics.10 Here are their working ‘philosophies’:

At CECM we are interested in developing methods for exploiting math-
ematical computation as a tool in the development of mathematical in-
tuition, in hypothesis building, in the generation of symbolically assisted
proofs, and in the construction of a flexible computer environment in
which researchers and research students can undertake such research.
That is, in doing experimental mathematics. [6]

Experimental Mathematics publishes formal results inspired by exper-
imentation, conjectures suggested by experiments, surveys of areas of
mathematics from the experimental point of view, descriptions of algo-
rithms and software for mathematical exploration, and general articles
of interest to the community.

For centuries mathematicians have used experiments, some leading to im-
portant discoveries: the Gibbs phenomenon in Fourier analysis, the determinis-
tic chaos phenomenon, fractals. Wolfram’s extensive computer experiments in
theoretical physics paved the way for his discovery of simple programs having
extremely complicated behavior [40]. Experimental mathematics—as system-
atic mathematical experimentation ranging from hypotheses building to assisted
proofs and automated proof–checking—will play an increasingly important role
and will become part of the mainstream of mathematics. There are many reasons
for this trend: they range from logical (the absolute truth simply doesn’t exist),
sociological (correctness is not absolute as mathematics advances by making mis-
takes and correcting and re–correcting them), economic (powerful computers will
be accessible to more and more people), and psychological (results and success

9 www.cecm.sfu.ca.
10 www.expmath.org.

Mathematical Proofs at a Crossroad? 27

inspire emulation). The computer is the essential, but not the only tool. New the-
oretical concepts will emerge, for example, the systematic search for new axioms.
Assisted-proofs are not only useful and correct, but they have their own beauty
and elegance, impossible to find in classical proofs. The experimental trend is
not antithetical to the axiomatic-deductive approach, it complements it. Nor is
the axiomatic-deductive proof a posteriori work, a luxury we can marginalize.
There is hope for integration!

Acknowledgment

We are grateful to Greg Chaitin and Garry Tee for useful comments and refer-
ences.

References

1. K. Appel, W. Haken. Every Planar Graph is Four Colorable, Contemporary Math-
ematics 98, AMS, Providence, 1989.

2. M. Atiyah et al. Responses to ‘Theoretical mathematics: Toward a cultural synthe-
sis of mathematics and theoretical physics’, Bulletin of AMS 30 (1994), 178–211.

3. L. Babai. Probably true theorems, cry wolf? Notices of AMS 41 (5) (1994), 453–
454.

4. J. Barrow. Impossibility–The Limits of Science and the Science of Limits, Oxford
University Press, Oxford, 1998.

5. M. Blum. How to prove a theorem so no one else can claim it, Proceedings of
the International Congress of Mathematicians, Berkeley, California, USA, 1986,
1444–1451.

6. J. M. Borwein. Experimental Mathematics and Integer Relations at www.

ercim.org/publication/Ercim News/enw50/borwein.html.
7. J. M. Borwein. www.cecm.sfu.ca/personal/jborwein/CRM.html.
8. J. M. Borwein, D. Bailey. Mathematics by Experiment: Plausible Reasoning in the

21st Century, A.ÊK.Ê Peters, Natick, MA, 2003.
9. J. M. Borwein, D. Bailey, R. Girgensohn. Experimentation in Mathematics: Com-

putational Paths to Discovery, A.ÊK.Ê Peters, Natick, MA, 2004.
10. A. S. Calude. The journey of the four colour theorem through time, The NZ Math.

Magazine 38, 3 (2001), 27–35.
11. C. S. Calude, E. Calude, S. Marcus. Passages of Proof, Los Alamos preprint

archive, arXiv:math.HO/0305213, 16 May 2003.
12. G. J. Chaitin. The Unknowable, Springer Verlag, Singapore, 1999.
13. G. J. Chaitin. Exploring Randomness, Springer Verlag, London, 2001.
14. G. J. Chaitin. Meta Math!, E-book at www.cs.auckland.ac.nz/CDMTCS/chaitin/

omega.html.
15. M. Conder. Pure mathematics: An art? or an experimental science? NZ Science

Review 51, 3 (1994), 99–102.
16. E. Ehrlich, S. B. Flexner, G. Carruth, J. M. Hawkins. Oxford American Dictio-

nary, Avon Publishers of Bard, Camelot, Discus and Flare Books, New York,
1982.

17. W. Feit, J. G. Thomson. Solvability of groups of odd order, Pacific J. Math. 13
(1963), 775–1029.

28 Cristian S. Calude and Solomon Marcus

18. S. Goldwasser, S. Micali, C. Rackoff. The knowledge complexity of interactive
proof–systems, SIAM J. Comput., 18(1) (1989), 186–208.

19. R. Hersh. What Is Mathematics, Really?, Vintage, London, 1997.
20. A. Jaffe and F. Quinn. Theoretical mathematics: Toward a cultural synthesis of

mathematics and theoretical physics, Bulletin of AMS 29 (1993), 178–211.
21. M. Kline. Mathematics: The Loss of Certainty, Oxford University Press, Oxford,

1982.
22. D. E. Knuth. Theory and practice, EATCS Bull. 27 (1985), 14–21.
23. D. E. Knuth. Literate Programming, CSLI Lecture Notes, no. 27, Stanford, Cali-

fornia, 1992.
24. I. Lakatos. Proofs and Refutations. The Logic of Mathematical Discovery, John

Worrall and Elie Zahar (eds.), Cambridge University Press, Cambridge, 1966.
25. S. Mac Lane. Despite physicists, proof is essential in mathematics, Synthese 111

(1997), 147–154.
26. S. Marcus. No system can be improved in all respects, in G. Altmann, W. Koch

(eds.) Systems; New Paradigms for the Human Sciences, Walter de Gruyter,
Berlin, 1998, 143–164.

27. S. Marcus. Ways of Thinking, Scientific and Encyclopedic Publ. House, Bucharest,
1987. (in Romanian)

28. C. Perelman, L. Olbrechts-Tyteca. Traité de l’Argumentation. La Nouvelle
Rhetorique, Éditions de l’Université de Bruxelles, Bruxelles, 1988.

29. G. Pólya. How to Solve It, Princeton University Press, Princeton, 1957. (2nd
edition)

30. G. Pólya. Mathematics and Plausible Reasoning, Volume 1: Induction and Analogy
in Mathematics, Volume 2: Patterns of Plausible Inference, Princeton University
Press, Princeton, 1990. (reprint edition)

31. M. Raussen, C. Skau. Interview with Jean-Pierre Serre, Notices of AMS, 51, 2
(2004), 210–214.

32. N. Robertson, D. Sanders, P. Seymour, R. Thomas. A new proof of the four-colour
theorem, Electronic Research Announcements of AMS 2,1 (1996), 17–25.

33. S. Robinson. Russian reports he has solved a celebrated math problem, The New
York Times, April 15 (2003), p.ÊD3.

34. G. Rozenberg, A. Salomaa. Cornerstones of Undecidability, Prentice-Hall, New
York, 1994.

35. K. Sigmund. Review of George G. Szpiro. “Kepler’s Conjecture”, Wiley, 2003,
Mathematical Intelligencer, 26, 1 (2004), 66–67.

36. M. Stöltzner. What Lakatos could teach the mathematical physicist, in G.
Kampis, L. Kvasz, M. Stöltzner (eds.). Appraising Lakatos. Mathematics, Method-
ology and the Man, Kluwer, Dordrecht, 2002, 157–188.

37. E. R. Swart. The philosophical implications of the four-colour problem, American
Math. Monthly 87, 9 (1980), 697–702.

38. G. J. Tee. Computers and mathematics, The NZ Math. Magazine 24, 3 (1987),
3–9.

39. T. Tymoczko. The four-colour problem and its philosophical significance, J. Phi-
losophy 2,2 (1979), 57–83.

40. S. Wolfram. A New Kind of Science, Wolfram Media, 2002.
41. Experimental Mathematics: Statement of Philosophy, www.expmath.org/expmath

/philosophy.html.

Rational Relations as Rational Series

Christian Choffrut

LIAFA, UMR 7089, Université Paris 7
2 Pl. Jussieu, Paris Cedex 75251

France
cc@liafa.jussieu.fr

Abstract. A rational relation is a rational subset of the direct product
of two free monoids: R ⊆ A∗ × B∗. Consider R as a function of A∗ into
the family of subsets of B∗ by posing for all u ∈ A∗, R(u) = {v ∈ B∗ |
(u, v) ∈ R}. Assume R(u) is a finite set for all u ∈ A∗. We study how
the cardinality of R(u) behaves as the length of u tends to infinity and
we show that there exists an infinite hierachy of growth functions.

Keywords: free monoid, rational relation, rational series.

1 Introduction

It is a elementary result in mathematics that the n-th term of a sequence of reals
satisfying a linear recurrence equation

un = a1un−1 + a2un−2 + . . .+ akun−k

is asymptotically equivalent to a linear combination of expressions of the form
P (n)λn−k where λ is a root of the characteristic polynomial of the recurrence,
k its multiplicity and P (n) a polynomial of degree k− 1, cf. [4, Theorem 6.8] or
[6, Lemma II.9.7]. Not less known is the fact that the un’s are the coefficients
of a rational series in one variable, or equivalently of the infinite expansion of
the quotient of two polynomials on the field of the reals. The natural extension
to rational series in a finite number of non-commuting variables is completely
solved in [7] where it is shown that when the growth function of the coefficients is
subexponential, it is polynomial with positive integer exponent. For exponential
growth, some indication can be found in [10].

The purpose of this paper is concerned with a less classical extension. We still
consider rational series in non-commuting variables but the coefficients belong
to the family of rational subsets of a free monoid and we study the asymptotic
behaviour (in some precise way which is specified later) of the coefficients.

2 Preliminaries

We refer the reader to the textbooks [1, 3, 6] for all definitions which are not
recalled here, such as the notions of semiring, finite automaton, and the like.

J. Karhumäki et al. (Eds.): Theory Is Forever (Salomaa Festschrift), LNCS 3113, pp. 29–34, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

30 Christian Choffrut

2.1 Rational Series

We denote by A a finite set of letters (the alphabet) and by A∗ the free monoid
it generates. An element u of A∗ is called a word or a string. Its length |u| is the
number of letters occurring in u. The empty word has length 0 and is denoted
by 1.

Given a semiring K, we denote by K〈〈A∗〉〉 the monoid algebra of A∗ over
the semiring K. We view its elements as formal sums (i.e., series) of terms of
the form ku where k ∈ K and u ∈ A∗. This algebra is provided with the usual
operations of sum, product and star restricted to the elements whose constant
term is zero. The family RatK(A∗) of rational series over the semiring K is the
smallest family of series containing the series reduced to the constant 0 and
the terms ka for all a ∈ A and closed under the operations of sum, product
and restricted star. By Kleene’s Theorem we know that any rational subset is
recognized by a finite automaton with multiplicities [6, 5]. Here, we are concerned
with the case when K is the semiring of rational subsets of the free monoid B∗

for some finite alphabet B, denoted by RatBB
∗ where B is the Boolean semiring

{0, 1}, or more succinctly RatB∗.

2.2 Rational Relations

We recall that a relation R ⊆ A∗ ×B∗ is rational if it is a rational subset of the
product monoid A∗ × B∗, i.e., if it belongs to the smallest family of subsets of
the monoid A∗ ×B∗, containing the singletons and closed under the operations
of subset union, product (X · Y = {x · y | x ∈ X, y ∈ Y } where the product is
meant componentwise) and star (X∗ =

⋃
n≥0X

n).
The connection with the rational series is stated in the following basic result,

cf., [5, Theorem I 1.7.].

Proposition 1. A relation R ⊆ A∗ × B∗ is rational if and only if the series
R(u) = {v ∈ B∗ | (u, v) ∈ R} is rational over the semiring RatB∗.

This Proposition breaks the symmetry between the input alphabet A and
the output alphabet B. The set {v ∈ B∗ | (u, v) ∈ R} is called the image of
u ∈ A∗. The domain of R, denoted by Dom(R), is the subset of strings u ∈ A∗

whose image is non-empty. Assuming all input strings have finite image, we say
that the rational relation R has asymptotic growth function g : N −→ N, if the
following two conditions are satisfied (||X || denotes the cardinality of X)

1) ||R(w)|| = O(g(|w|) holds for all w ∈ DomR

2) for some infinite (length-) increasing sequence of words (wn)n>0 we have
||R(wn)|| = θ(g(|wn|)

Observe that the hypothesis that all input words have finite image is not a
strong requirement, since it can be easily shown that the restriction of a rational
relation to the subset of input strings with finite image, i.e., the relation R<∞ =
{(u, v) ∈ A∗×B∗ | (u, v) ∈ R and ||R(u)|| <∞} is a rational subset of A∗×B∗.
The problem is first studied by Schützenberger in [8].

Rational Relations as Rational Series 31

2.3 Finite Transducer

Rational relations can be computed by a construct which is a natural extension
of a finite automaton.

A transducer is a quadruple T = (Q,Q−, Q+, μ) where Q is the finite set
of states, Q− ⊆ Q (resp. Q+ ⊆ Q) the set of initial (resp. final) states and
μ : A∗ → Rat(B∗)Q×Q is a linear representation of the monoid A∗ into the
multiplicative monoid of square matrices in the semiring Rat(B∗). Observe that
the input and output alphabets A and B are understood in the definition of a
transducer.

A linear representation is traditionally pictured as a finite labeled graph. E.
g., consider the representation μ : {a, b}∗ → Rat{b}∗3×3 defined by

μ(a) =

⎛⎝1 ∅ ∅
∅ b ∅
∅ ∅ 1

⎞⎠ μ(b) =

⎛⎝1 1 ∅
∅ ∅ 1
∅ ∅ 1

⎞⎠
Identify the rows and colu;ns with the integers 1, 2, 3 and choose Q− = {1} and
Q+ = {3}. It should be clear how to pass from the matrix representation to
the following graph representation (by abuse of notation, the sets consisting of
a unique word are identified with this word, i.e., we write b, instead of the more
rigorous {b}).

The relation computed by T, denoted ||T||, is the relation: {(u, v) ∈ A∗ ×B∗|
∃q− ∈ Q−, q+ ∈ Q+, v ∈ μq−,q+(u)}. In the above example, the relation com-
puted by the transducer is {(u, an) ∈ A∗ × a∗ | u ∈ A∗banbA∗}.

Since we are concerned with rational relations for which every input has finite
image, all entries of the matrices μ(a) for a ∈ A are finite subsets of B∗.

3 An Infinite Hierachy

The rational relations with finite but unbounded image, i.e., for which there is
no integer N such that ||R(u)|| < N holds for all u ∈ DomR, are characterized in
[9] by two local conditions on the structure of the tansducer. A relatively direct
consequence is that if the growth is subexponential, then it is bounded by O(nk)
for some integer k. We shall prove in this note a more precise result by showing
that for each integer k, there exists a rational relation whose growth function is
in θ(n

k
2).

32 Christian Choffrut

In order to exhibit an infinite hierarchy, consider the alphabets A = {a1, . . . ,
ak} and B = {b, c}. Set Wi = A∗ − aiA

∗ −A∗ai+1 for i = 1, . . . , k − 1 with the
convention W0 = A∗ −A∗a1 and Wk = A∗ − akA

∗. Define the relation

R(w) = {bn1cbn2c . . . cbnk | w ∈ W0a
n1
1 W1a

n2
2 . . . ank

k Wk} (1)

for all w ∈ (a+
1 a

+
2 . . . a

+
k)∗ (where as usual, we set X+ = XX∗). Observe that the

relation is indeed rational. We draw a transducer computing the relation when
k = 2 and let the reader guess why we do not draw it for values of k greater
than 2.

Proposition 2. We have ||R(w)|| = O(|w| k2) for all w ∈ DomR. Further-
more, for some infinite (length-) increasing sequence of words (wn)n>0 we have
||R(wn)|| = θ(|wn| k2).

Proof. Let us first prove the last claim. Consider the words wn =
∏

1≤i≤n a
i
1a

i
2·

. . . · ai
k. Then we have R(wn) = {bn1cbn2 . . . cbnk | 1 ≤ n1 ≤ n2 . . . ≤ nk ≤ n}.

A simple computation leads to |wn| = θ(k
2n

2) and ||R(wn)|| = (
kn
k

)
which com-

pletes the verification.

Let us now turn to the main claim and set

K = lim sup{r | ||R(w)||
|w|r = O(1) for all w ∈ (a+

1 a
+
2 . . . a

+
k)+}

The previous claim shows that K ≥ k
2 . In order to prove the equality let us

make a few observations. To that order, consider the standard decomposition of
an arbitrary word of the domain of R.

w =

⎛⎝ ∏
1≤j≤n

∏
1≤i≤k

a
rij

i

⎞⎠ = ar11
1 ar21

2 . . . ark1
k . . . ar1n

1 ar2n

2 . . . arkn

k

Call spectrum of w the function which assigns to each 1 ≤ i ≤ k, the number
σw(i) of different exponents ri,j , with 1 ≤ j ≤ n. Let N be the maximum of the

Rational Relations as Rational Series 33

σw(i)’s when i from 1 to k. Then the number of elements in the image of w is
in O(Nk). It now suffices to give a lower bound for the length of w.

Observation 1: We may assume that {rij | 1 ≤ j ≤ n} = {1, . . . , σw(i)} holds for
1 ≤ i ≤ k.

Indeed, for a fixed 1 ≤ i ≤ k, the bijection which to each exponent rij
associates its rank among the exponents of the letter ai, does not increase the
length of the word and does not modify the cardinality of its image (e. g., the
sequence 4, 2, 5, 4, 7 of exponents would be normalized as 2, 1, 3, 2, 4).

The second observation is obvious.

Observation 2: We may assume that for each 1 ≤ i ≤ k there exists n−σw(i)+1
occurrences of exponent 1 and one occurrence of each exponent 2, . . . , σw(i). In
particular, if i is the value of the index which achieves the maximum σw(i) (equal
to N), the length |w|ai in the letter ai is at least equal to θ(N2).

As a consequence, by observation 2 the length |w| of a word w whose spec-
trum satisfies max{σw(i) | 1 ≤ i ≤ k} = N , is not less than θ(N2). Since the
cardinality of R(w) under this hypothesis is in O(Nk), the proof is completed.

��

Actually we may relax the condition on the number of generators of the free
monoid and establish the same result on the binary alphabet A = {a, b}. For
each integer k, consider the family Rk of rational relations with subexponential
growth

R ⊆ A∗ ×A∗ is in Rk if and only if ||R(w)|| = O(|w| k2) (2)

Theorem 1. The hierachy 2 is strict.

Proof. Consider the relation in (1) and define E = {(abia, ai) | i = 1, . . . , k}∗.
Then the composition E ◦R is a rational relation with growth function θ(n

k
2).
��

4 Further Developments

There are plenty of possible variations of the problem of the asymptotic growth
of rational series. We may wish to study more general semirings for the coeffi-
cients (provided we can assciate a numerical value, such as the cardinality, as in
this note) or study rational series over more general than free monoids, or more
ambitiously, extend both the coefficient semiring and the monoid simultaneously.
For example, consider an N-rational series over the direct product of two free
monoids A∗ and B∗. Given such a series s, denote by s(u,v) the coefficient asso-
ciated with the pair (u, v) ∈ A∗ × B∗: s =

∑
u∈A∗,v∈B∗ s(u,v)(u, v). The growth

function of the coefficients of the series is the function g : N → N defined as
g(n) = max{s(u,v) | |u| + |v| = n}. The example worked out by Wich in order
to exhibit a logarithmic degree of ambiguity for linear context-free languages

34 Christian Choffrut

can be directly interpreted in terms of such series. Indeed, consider the following
three unambiguous rational series of the direct product {a, b}∗ × {a, b}∗.

G = {(ai1bai2b . . . ainb, a2i1ba2i2b) . . . a2inb | n > 0, i1, i2, . . . in ≥ 0}
M = {anb, 1) | n ≥ 0}
R = {(a2i1ba2i2b . . . a2inb, ai1bai2b . . . ainb) | n > 0, i1, i2, . . . in ≥ 0}

By considering pairs of the form

(aba4b . . . a2k

b, a2ba8b . . . a2k−1
b)

for some integer k, it is shown that the product GMR has logarithmic growth,
see [11] for details.

More surprisingly, the simplest case of N-rational series in k commuting vari-
ables is not settled, at least as far as we know. The result in [2] proves in a
special case that the asymptotic growth can be of the form λn√

n
for some real λ.

5 Open Problems

Problem 1. Prove or disprove that every rational relation whose growth is
subexponential has an asymptotic growth function of the form |w| k2 for some
integer k ≥ 0.

Problem 2. Does there exist an algorithm for computing the exponent of the
asymptotic growth function of a subexponential rational relation?

References

1. J. Berstel. Transductions and context-free languages. B. G. Teubner, 1979.
2. A. Bertoni, C. Choffrut, M. Goldwurm, and V. Lonati. On the number of occur-

rences of a symbol in words of regular languages. Theoret. Comput. Sci., 302(1-
3):431–456, 2003.

3. S. Eilenberg. Automata, Languages and Machines, volume A. Academic Press,
1974.

4. P. Henrici. Elements of numerical analysis. John Wiley, 1964.
5. J. Sakarovitch. Eléments de théorie des automates. Vuibert Informatique, 2003.
6. A. Salomaa and M. Soittola. Automata-Theoretic Aspects of Formal Power Series,

volume Texts and Monographs in Compuer Science. Springer Verlag, 1978.
7. M.-P. Schützenberger. Finite counting automata. Information and Control, 5:91–

107, 1962.
8. M.-P. Schützenberger. Sur les relations rationnelles fonctionnelles entre monöıdes

libres. Theoret. Comput. Sci., 9:243–259, 1976.
9. A. Weber. On the valuedness of finite transducers. Acta Informatica, 27:749–780,

1990.
10. A. Weber and H. Seidl. On the degree of ambiguity of finite automata. Theoret.

Comput. Sci., 88:325–349, 1991.
11. K. Wich. Sublinear ambiguity. In Proceedings of the Conference MFCS’2000,

number 1893 in LNCS, pages 690–698. Springer-Verlag, 2000.

Networks of Standard Watson-Crick D0L

Systems with Incomplete
Information Communication

Erzsébet Csuhaj-Varjú�

Computer and Automation Research Institute
Hungarian Academy of Sciences

Kende utca 13-17, 1111 Budapest, Hungary
csuhaj@sztaki.hu

Abstract. Watson-Crick D0L systems (WD0L systems) are variants of
D0L systems with controlled derivations, inspired by the phenomenon
of Watson-Crick complementarity of the familiar double helix of DNA.
These systems are defined over a DNA-like alphabet, i.e. each letter has
a complementary letter and this relation is symmetric. Depending on a
special condition, called the trigger, a parallel rewriting step is applied
either to the string or to its complementary string. A network of Watson-
Crick D0L systems (an NWD0L system) is a finite set of WD0L systems
over a common DNA-like alphabet which act on their own strings in
parallel and after each derivation step send copies some of the generated
words to the other nodes. In [2] it was shown that the so-called standard
NWD0L systems form a class of computationally complete devices, that
is, any recursively enumerable language can be determined by a network
of standard Watson-Crick D0L systems. In this paper we prove that the
computational power of these constructs does not change in the case of
a certain type of incomplete information communication, namely where
the communicated word is a non-empty prefix of the generated word. An
analogous statement can be given for the case where the communicated
word is a non-empty suffix of the string.

1 Introduction

Watson-Crick complementarity, motivated by the well-known characteristics of
the familiar double helix of DNA, is a fundamental concept in DNA computing.
According to this phenomenon, two DNA strands form a double strand if they
are complement of each other. A notion, called a Watson-Crick D0L system
(a WD0L system), where the paradigm of complementarity is considered in
the operational sense, was introduced and proposed for further investigations
in [8, 9].
� Research supported in part by the Hungarian Scientific Research Fund ”OTKA”

Grant no. T 042529 and by Project “MolCoNet - A thematic network on Molecular
Computing, European Commission, Information Society Technologies Programme,
IST 2001-32008”.

J. Karhumäki et al. (Eds.): Theory Is Forever (Salomaa Festschrift), LNCS 3113, pp. 35–48, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

36 Erzsébet Csuhaj-Varjú

A Watson-Crick D0L system is a D0L system over a so-called DNA-like al-
phabet Σ and a mapping φ, called the trigger for complementarity transition.
In a DNA-like alphabet each letter has a complementary letter and this relation
is symmetric. The letters of a DNA-like alphabet are called purines and pyrim-
idines, a terminology extended from the DNA-alphabet of the four nucleotides
A, C, T, and G which are the sequence elements forming DNA strands. The
complementary letter of each purine is a pyrimidine and the complementary let-
ter of each pyrimidine is a purine. The trigger is a logical-valued mapping over
the set of strings over the DNA-like alphabet with the following property: the
φ-value of the axiom is 0, and whenever the φ-value of a string is 1, then the
φ-value of its complementary word must be 0. (The complement of a string is
obtained by replacing each letter with its complementary letter.) The derivation
in the Watson-Crick D0L system is defined as follows: when the new string is
computed by applying the morphism of the D0L system, then it is checked ac-
cording to the trigger. If the φ-value of the obtained string is 0 (the string is
a so-called good word), then the derivation continues in the usual manner. If
the obtained string is a so-called bad one, that is, its φ-value is equal to 1, then
the string is changed for its complement and the derivation continues with this
complementary string.

The idea behind the concept is the following: in the course of a computa-
tional or a developmental process things can go wrong to such extent that it is
advisable to continue with the complementary string, which is always available
[12]. Watson-Crick complementarity is viewed as an operation: together with or
instead of a word we consider its complementary word.

Particularly important variants of Watson-Crick D0L systems are the so-
called standard Watson-Crick D0L systems (SWD0L systems). The controlled
derivation in a standard Watson-Crick D0L system is defined as follows: after
rewriting the string by applying rules of the D0L system in parallel, the number
of occurrences of purines and that of pyrimidines in the obtained string are
counted. If in the new string there are more occurrences of pyrimidines than
that of purines, then each letter in the string is replaced by its complementary
letter and the derivation continues from this string, otherwise the derivation
continues in the usual manner. Thus, in this case the trigger is defined through
the number of occurrences of purines and pyrimidines in the string.

Watson-Crick D0L systems have been studied in details during the years.
The interested reader can find further information on the computational power
and different properties of these systems in [1, 16–18, 12–15,7].

Another research direction was initiated in [3] where networks of Watson-
Crick D0L systems (NWD0L systems) were introduced and their behaviour
was studied. A network of Watson-CrickD0L systems (an NWD0L system) is a
finite set ofWD0L systems over a common DNA-like alphabet which act on their
own strings in parallel and after each derivation step communicate copies some
of the generated words to the other nodes. The condition for communication is
determined by the trigger for turning to the complement.

Networks of Standard Watson-Crick D0L Systems 37

In [3] NWD0L systems with two main variants of protocols were studied:
in the first case (protocol (a)), after a parallel rewriting step the nodes keep
the good strings and the corrected strings (complements of the bad strings) and
communicate a copy of each good string they obtained to each other node. In
the second case (protocol (b)), the nodes, again, keep both the good and the
corrected strings but communicate the copies of the corrected strings. The two
protocols realize diferent philosophies: in the first case the nodes inform each
other about their correct activities, in the second case they give information on
the correction of their failures.

The research was continued in [4], where three results were established about
the power of so-called standard networks of Watson-Crick D0L systems (or
NSWD0L systems). Two of them show how it is possible to solve in linear
time well-known NP-complete problems, namely, the Hamiltonian Path Prob-
lem and the Satisfiability Problem. The third one shows how in the very simple
case of four-letter DNA alphabets we can obtain weird (not even Z-rational)
patterns of the population growth of the strings in the network.

Network architectures are in the focus of interest in present computer science.
One of the main areas of investigations is to study how powerful computational
tools can be obtained by using networks of simple computing devices functioning
with simple communication protocols. In [2] it was shown that any recursively
enumerable language can be obtained as the language of an extended NSWD0L
system using protocol (a). The language of an extended NSWD0L system is the
set of words which are over a special sub-alphabet of the system (the terminal
alphabet) and which appear at a dedicated node, the master node, at a derivation
step during the functioning of the system.

In this paper we deal with networks of standard WD0L systems with a cer-
tain type of incomplete information communication. We study the computational
power of NSWD0L systems where the node sends to each other node a good
non-empty prefix of every good non-empty word obtained by parallel rewriting
(this can be the whole good word itself) and keeps the obtained good words and
the complements of the bad words. A node is allowed to send different prefixes
of the same string to different nodes, but it is allowed to send only one prefix of
the string to a certain node. It also might happen that the same word is com-
municated to a node as the chosen prefix of two different words and/or from two
different nodes, but after the communication a communicated good string will
be present at the destination node always only in one copy.

We prove that in this case extended networks of standard Watson-Crick D0L
systems form a class of computationally complete devices, i.e. any recursively
enumerable language can be obtained by these constructs. An analogous state-
ment can be given for the case where the communicated strings are good non-
empty suffixes of the string.

38 Erzsébet Csuhaj-Varjú

2 Preliminaries and Basic Notions

Throughout the paper we assume that the reader is familiar with the basic
notions of formal language theory. For further details and unexplained notions
consult [6], [10], and [11].

The set of non-empty words over an alphabet Σ is denoted by Σ+; if the
empty string, λ, is included, then we use notation Σ∗. A set of strings L ⊆ Σ∗ is
said to be a language over alphabet Σ. For a string w ∈ L and for a set U ⊆ Σ,
we denote by |w|U the number of occurrences of letters of U in w.

A string u is said to be a prefix (a suffix) of a string w ∈ Σ∗ if w = uz
(w = zu) holds for u, z ∈ Σ∗; u is called a proper prefix (a proper suffix) if
u �= w and u �= λ holds. In the sequel, we shall denote by pref(w) and suf(w)
the set of prefixes and the set of suffixes of a string w, respectively.

Now we recall the basic notions concerning standard Watson-Crick D0L sys-
tems [8].

By a DNA-like alphabet we mean an alphabet Σ with 2n letters, n ≥ 1,
where Σ is of the form Σ = {a1, . . . , an, a1, . . . , an}. Letters ai and ai, 1 ≤ i ≤ n,
are said to be complementary letters. Σ1 = {a1, . . . , an} is said to be the sub-
alphabet of purines of Σ and Σ2 = {a1, . . . , an} is called the sub-alphabet of
pyrimidines.

A string w ∈ Σ∗ is said to be good (or correct) if |w|Σ1 ≥ |w|Σ2 holds,
otherwise the string is called bad (or not correct). The empty word is a good
word.

We denote by hw the letter to letter endomorphism of a DNA-like alphabet
Σ mapping each letter to its complementary letter.

A standard Watson-Crick D0L system (an SWD0L system, for short) is a
triple H = (Σ,P,w0), where Σ is a DNA-like alphabet, the alphabet of the
system, P is a set of pure context-free rules over Σ, the set of rewriting rules of
the system, and w0 is a non-empty good (correct) word over Σ, the axiom of H.
Furthermore, P is complete and deterministic, that is, P has for each letter b in
Σ exactly one rule of the form b→ u, with u ∈ Σ∗.

The direct derivation step in H is defined as follows: for two strings x, y ∈ Σ∗

we say that x directly derives y in H, denoted by x =⇒H y, if x = x1 . . . xm,
y = z1 . . . zm, m ≥ 1, and zi = yi if y1 . . . ym is a good word and zi = hw(yi)
otherwise, where xi → yi ∈ P, 1 ≤ i ≤ m. The empty word, λ, derives directly
itself. The parallel rewriting of each xi onto yi, 1 ≤ i ≤ m, is denoted by
x1 . . . xm =⇒P y1 . . . ym.

Thus, if after applying a parallel rewriting to the string the obtained new
string has less occurrences of purines than that of pyrimidines, then the new
string must turn to its complement and the derivation continues from this com-
plementary word, otherwise the derivation continues in the usual manner.

Now we recall the basic notions concerning networks of standard Watson-
Crick D0L systems [3, 2].

By a network of standard Watson-CrickD0L systems (an NSWD0L system,
for short) with m components, where m ≥ 1, we mean an m+ 1-tuple

Networks of Standard Watson-Crick D0L Systems 39

Γ = (Σ, (P1, w1), . . . , (Pm, wm)),

where

– Σ is a DNA-like alphabet, the alphabet of the system,
– Pi is a complete deterministic set of pure context-free rules over Σ, the set

of rules of the i-th component (or the i-th node) of Γ, 1 ≤ i ≤ m, and
– wi is a good (correct) non-empty word over Σ, the axiom of the i-th com-

ponent, 1 ≤ i ≤ m.

The first component, (P1, w1), is said to be the master node. (We note that,
for our convenience, any other node can be distinguished as the master node,
this does not mean any change in the meaning of the definition).

NSWD0L systems function by changing their states according to parallel
derivation steps performed in the WD0L manner and a communication protocol.

By a state of an NSWD0L system Γ = (Σ, (P1, w1), . . . , (Pm, wm)), m ≥ 1,
we mean an m-tuple (L1, . . . , Lm), where Li is a set of good words over Σ,
1 ≤ i ≤ m.

The initial state of the system is ({w1}, . . . {wm}).
Modifying the notion of protocol (a), introduced in [3], we define the func-

tioning of an NSWD0L sytem which uses communication protocol (x, a), where
x ∈ {pref, suf}. In this case, after the parallel rewriting step, the node sends a
good non-empty prefix (a good non-empty suffix) of every obtained good non-
empty string to each other node and keeps the obtained good words and the
complements of the generated bad words. Notice that the communicated word
can be the good word itself. Observe that a node is allowed to send different
prefixes of the same string to different nodes, but it is allowed to send only one
prefix of the string to a certain node. It also might happen that the same word
is communicated to a node as the chosen prefix of two different words and/or
from two different nodes, but after communication a communicated good string
will be present at the destination node always only in one copy.

Let Γ = (Σ, (P1, w1), . . . , (Pm, wm)), m ≥ 1, be an NSWD0L system and
let s1 = (L1, . . . , Lm) and s2 = (L′

1, . . . , L
′
m) be two states of Γ.

We say that s1 directly derives s2 according to protocol (x, a), where x ∈
{pref, suf}, written as s1

(x,a)
=⇒Γ s2, if the following condition holds: for each i,

1 ≤ i ≤ m,

L′
i = A′

i ∪B′
i

m⋃
j=1,j �=i

C′
j ,

where

A′
i = {z | z = hw(y), x =⇒Pi y, x ∈ Li, y is a bad string},

B′
i = {y | x =⇒Pi y, x ∈ Li, y is a good string},

and Cj is a set of elements obtained from the elements of

B′
j = {vj1 , . . . , vjrj

} = {y | x =⇒Pj y, x ∈ Lj, is a good string}

40 Erzsébet Csuhaj-Varjú

as follows:

C′
j = {v′j1} ∪ · · · ∪ {v′jr

},
where v′jk

∈ x(vjk
), for x ∈ {pref, suf}, v′jk

is a non-empty good word and
vjk
∈ B′

j , 1 ≤ k ≤ rj . If B′
j is the empty set, then C′

j is empty as well.

The transitive and reflexive closure of
(x,a)
=⇒Γ is denoted by

(x,a)
=⇒

∗
Γ .

The language of an NSWD0L system Γ using protocol (x, a) for x ∈ {pref,
suf} Γ = (Σ, (P1, w1), . . . , (Pm, wm)), m ≥ 1, is

L(x,a)(Γ) = {u1 ∈ L1 | ({w1}, . . . , {wm}) (x,a)
=⇒

∗
Γ (L1, . . . , Lm)}.

That is, the language of Γ is the set of strings which appear at the master
node at some derivation step of the functioning of the system, including the
axiom.

By an extended NSWD0L system (an ENSWD0L system, for short) we
mean an m + 2-tuple Γ = (Σ, T, (P1, w1), . . . , (Pm, wm)), m ≥ 1, where T ⊆ Σ
and all other components of Γ are defined in the same way as in the case of
NSWD0L systems.

The language of an extended NSWD0L system Γ using protocol (x, a) for
x ∈ {pref, suf} is defined by

L(x,a)(Γ) = {u1 ∈ (T ∗ ∩ L1) | ({w1}, . . . , {wm}) (x,a)
=⇒

∗
Γ (L1, . . . , Lm)}.

3 Computational Power of ENSWD0L Systems

In the following we show that any recursively enumerable language can be ob-
tained as the language of an extended NSWD0L system using communication
protocol (pref, a). Since the language of any extended NSWD0L system is a
recursively enumerable language, the statement implies that ENSWD0L sys-
tems are as powerful as Turing machines. Analogous statement can be given for
the case of protocol (suf, a), by modifying the proof of the above statement.
The idea of the proof is to simulate the generation of the words of the recur-
sively enumerable language of an Extended Post Correspondence (EPC) by an
ENSWD0L system.

Let T = {a1, . . . , an} be an alphabet, where n ≥ 1. An Extended Post
Correspondence (an EPC, for short) is a pair P = ({(u1, v1), . . . , (ur, vr)}, (za1 ,
. . . , zan)), where uj , vj , zai ∈ {0, 1}∗, 1 ≤ j ≤ r, 1 ≤ i ≤ n.

The language represented by P in T, written as L(P), is

L(P) = {x1 . . . xm ∈ T ∗ | there are indices s1, . . . , st ∈ {1, . . . , r}, t ≥ 1,
such that us1 . . . ust = vs1 . . . vstzx1 . . . zxm}.

It is known that for each recursively enumerable language L there exists an
Extended Post Correspondence P such that L = L(P) [5].

Networks of Standard Watson-Crick D0L Systems 41

We note that the above definition remains correct and the statement remains
true if we suppose that the words ui, vi, zaj are given over {1, 2} instead of {0, 1}.
We shall use this observation to make the construction simpler, so in the sequel
we shall consider this version of the EPC and the above statement. Thus, we can
consider the words us1 . . . ust and vs1 . . . vstzx1 . . . zxm as numbers in the base
three notation and therefore we can speak about their values.

According to the above theorem, a word w = x1 . . . xm, xi ∈ T, 1 ≤ i ≤ m,
is in L if and only if there exist indices s1, . . . , st ∈ {1, . . . , r} such that the two
words us1 . . . ust and vs1 . . . vstzx1 . . . zxm have the same value as numbers in the
base three notation.

It is easy to see that we can determine the words of L as follows: We start
the generation with a string of the form us1vs1 , s1 ∈ {1, . . . , r}. Then we add
u-s and v-s to the string in the correct manner to obtain a string of the form αβ
with α = us1 . . . ust and β = vs1 . . . vst , for t ≥ 1. Then, in the second phase of
the generation we add x-s and z-s to the string in a correct manner to obtain
x1 . . . xmus1 . . . ustvs1 . . . vstzx1 . . . zxm . In the final phase we check whether α =
us1 . . . ust and β′ = vs1 . . . vstzx1 . . . zxm are equal or not, and if they are equal,
then we eliminate both substrings from the string. If the empty word is in L, then
after the first phase of the above procedure, we continue with the final generation
phase. The reader can observe that the words of L can also be obtained if in
the previous procedure we represent α, β, and β′ with strings with exactly as
many occurrences of a certain letter, say, A and B, respectively, as the value of
α, β, and β′, respectively, according to the base three notation. Thus, we can
simulate the appending of a pair (uj , vj) or (ai, zai) to the string in generation
by modifying the number of occurrences of letters A and B in the word. This
observation will be used in our construction.

We shall use the following notation in the sequel: for a word u ∈ {1, 2}∗, we
denote by val(u) the value of u as a number in the base three notation and by
dig(u) the length of u (the number of digits in u).

Theorem 1. For every recursively enumerable language L there exists an
ENSWD0L system Γ such that L(pref,a)Γ) = L.

Proof. Let L be a recursively enumerable language with L ⊆ T ∗, where T =
{a1, . . . , an}, n ≥ 1, and let L be represented by an EPC

P = ({(u1, v1), . . . , (ur, vr)}, (za1 , . . . , zan)),

where uj , vj , zai ∈ {1, 2}∗, 1 ≤ j ≤ r, 1 ≤ i ≤ n. We construct an ENSWD0L
system Γ such that L(pref,a)(Γ) = L(P) and Γ , functioning with protocol
(pref, a), simulates the generation of words of L according to P.

For each pair (uj, vj), 1 ≤ j ≤ r, and for each pair (ai, zai), 1 ≤ i ≤ n,
Γ will have a dedicated node which simulates the effect of appending the pair
to the string in generation in a correct manner. Furthermore, Γ will also have
a node dedicated for deciding whether or not the two substrings representing
the auxiliary substrings α and β′ (see the short explanation before the theorem)
are equal. The nodes of Γ will also able to check whether or not a string of

42 Erzsébet Csuhaj-Varjú

a certain form which arrives at the node from another node is a good proper
prefix of the word that served as the source of the communication at the other
node. If a string of this form is a good proper prefix of the original string to be
communicated, then in the course of the further derivation steps this string will
have an occurrence of the trap symbol at the first position. Both the trap symbol,
F , and its complementary symbol, F , cannot be cancelled from a string at any
node. Thus, neither the string with the trap symbol, nor any word originating
from this string (by rewriting at any node or by communication to any node)
can take part in a derivation of a terminal word. For the sake of easier reading,
we also use the short term ” the node for the pair (u, v) or (a, za)” in the sequel
instead of the long version ”the node dedicated for simulating the effect of adding
the pair (u, v) or (a, za) to the string in generation.”

Now we define Γ . To help the legibility, we provide the reader only with the
necessary details.

Let

Γ = (Σ, T, (Pe, we),
(P(u1,v1), w(u1,v1)), . . . , (P(ur ,vr), w(ur ,vr)),
(P(a1,za1), w(a1,za1)), . . . , (P(an,zan), w(an,zan))),

where n and r are given by EPC P.
Let
Σ = {X,X | X ∈ {Ap, Bp, $p,A, $p,B, $0,p, $1,p}, 1 ≤ p ≤ 3}}∪

{X,X | X ∈ {Yj , A1,j , B1,j, $1,A,j, $1,B,j, $0,1,j, $1,1,j}, 1 ≤ j ≤ r}∪
{X,X | X ∈ {Zi, A2,i, B2,i, $2,A,i, $2,B,i, $0,2,i, $1,2,i}, 1 ≤ i ≤ n}∪
{Xi, Xi | X ∈ {a, b, c, d, f}, 1 ≤ i ≤ n}∪
{X,X | X ∈ {A4, B4, A5, B5, Z, E, F}}.

We note that F is the so-called trap symbol, and each node contains the
rule F → F and F → F . The axioms are defined as follows: w(uj ,vj) = E, for
1 ≤ j ≤ r, w(ai,zai

) = F, for 1 ≤ i ≤ n, and we = F. The master node is (Pe, we).
In the following we define the rule sets of the nodes, with some explanations

concerning their functioning.
The rule set P(uj ,vj) of the node dedicated for simulating the effect of ap-

pending the pair (uj , vj ,) 1 ≤ j ≤ r, to the string consists of the following rules:

A1 → A1,jA1,j , B1 → B1,jB1,j , $1,A → $1,A,j$1,A,j,

$1,B → $1,B,j, $0,1 → Yj$0,1,j$0,1,j, $1,1 → $1,1,j$1,1,j ,

A1,j → A3dig(uj)

1 , B1,j → B3dig(vj)

1 , $1,A,j → A
val(uj)
1 $1,A,

$1,B,j → B
val(vj)
1 $1,B, $0,1,j → $0,1, $1,1,j → $1,1.

P(uj ,vj) also contains Yj → F , and X → λ, for X ∈ {Yj , A1,j , B1,j, S1,A,j , S0,1,j,
S1,1,j}, and X → F for any other letter X of Σ different from E and the letters

Networks of Standard Watson-Crick D0L Systems 43

with the above listed rules. The node also has the ruleE→$0,1$1,1A
kj

1 $1,AB
lj
1 $1,B,

where kj is equal to the value of uj , and lj is equal to the value of vj .
We give some explanations to the functioning of this node. The rules of the

node are constructed in such way that a string which appears at the node under
the functioning of the system can lead to a terminal word of Γ only if it represents
αβ in the first phase of the generation of a word in L(P) according to EPC P .
The strings which are of different forms either already have an occurrence of the
trap symbol at the first position or will obtain it in the course of the following
derivation (rewriting steps and communication). Then neither this string with
F or any other string which originates from it can lead to a terminal word in Γ.

Suppose that a string found at this node is a non-empty prefix v′ of a string
of the form

v = $0,1$1,1A
k1
1 $1,AB

l1
1 $1,B,

where k1 is equal to the value of us1 . . . ust and l1 is equal to the value of
vs1 . . . vst , s1, . . . , st ∈ {1, . . . , r}, for some t ≥ 1. Then, by applying the rules of
the node, the obtained string will be the corresponding prefix v′′′ of the string

v′′ = Yj$0,1,j$0,1,j$1,1,j$1,1,j(A1,jA1,j)k1$1,A,j$1,A,j(B1,jB1,j)l1$1,B,j .

This string, v′′′, is a good string if and only if v′ contains $1,B, that is, either
v was communicated from another node, or v was obtained at this node by the
previous parallel rewriting step. Otherwise, v′′′ turns to its complement and in
the next derivation step the new string will obtain an occurrence of the trap
symbol at the first position. (Observe that v′′ represents a string of the form αβ,
see the explanation before the theorem.) Then neither this new string with F , nor
any other string which originates from this word can take part in the derivation
of a terminal word of Γ in the further steps of the derivation. Similarly, if v′′ is
a good string and it is communicated to another node, then it will change for a
string of trap symbols at the destination node. (Notice that in this case v′′ has
only one good non-empty prefix, namely itself.) The same holds for the strings of
the form like v′′ which arrive from another node (P(uh,vh), w(uh,vh)), with h �= j,
1 ≤ h ≤ r. We shall see below, that strings arriving from node (Pe, we) or from
a node (P(ai,zai

), w(ai,zai
)), for 1 ≤ i ≤ n, either already have an occurrence of

F at the first position or will be rewritten onto a string with the trap symbol at
the first position in the next derivation step. Thus, neither they, nor any word
originating from these strings can take part in the generation of a terminal word
of Γ in the course of the further derivation steps. Thus, suppose that v′′′ = v′′.
Then, by applying the rules of the node to v′, we obtain the string

$0,1$1,1A
k2
1 $1,AB

l2$1,B,

where k2 = k1 ·3dig(uj)+val(uj) and l2 = l1 ·3dig(vj)+val(vj). Thus, the rewriting
simulates the effect of appending the pair (uj, vj) to the string us1 . . . ustvs1 . . . vst

in the correct manner, to represent us1 . . . ustujvs1 . . . vstvj .
The rule set P(ai,zai

) of the node dedicated for simulating the effect of ap-
pending the pair (ai, zai), 1 ≤ i ≤ n, to the string contains the following rules:

44 Erzsébet Csuhaj-Varjú

A1 → A2,iA2,i, B1 → B2,iB2,i, $1,A → $2,A,i$2,A,i,

$1,B → $2,B,i, $0,1 → Zi$0,2,i$0,2,i, $1,1 → $1,2,i$1,2,i,

A2 → A2,iA2,i, B2 → B2,iB2,i, $2,A → $2,A,i$2,A,i,

$2,B → $2,B,i, $0,2 → Zi$0,2,i$0,2,i, $1,2 → $1,2,i$1,2,i,

A2,i → A2, B2,i → B3dig(zai
)

2 , $2,A,i → $2,A,

$2,B,i → B
val(zai

)

2 $2,B, $0,i,2 → $0,2, $1,i,2 → bi$1,2.

Moreover, it also contains productions bh → bh,ibh,i, bh,i → bh, bh,i → λ for
1 ≤ h ≤ n, and Zi → F , X → λ for X ∈ {Zi, A2,i, B2,i, $2,A,i, $0,2,i, $0,2,i} and
X → F for any other letter X of Σ different from the letters with productions
listed above. Letter bi represents ai ∈ T, 1 ≤ i ≤ n. Let Tb = {bi | 1 ≤ i ≤ n}.

Again, we give some explanations to the functioning of this node. Analogously
to the previous case, the productions of this node are constructed in such way
that a string which appears at this node can lead to a terminal word in Γ only
if it represents either αβ or uαβ′ in the first, respectively in the second phase
of the generation of a word in L(P). The strings which are of different forms
either already have an occurrence of the trap symbol at the first position or will
obtain it in the course of the following derivation (rewriting and communication)
and neither the string with F nor any other string originating from it can lead
to a terminal word in Γ. Suppose that a string found at this node is a good
non-empty prefix v′ of a string v of the form

v = $0,pu
′$1,pA

k1
p $p,AB

l1
p $p,B,

where u′ ∈ T ∗
b , p ∈ {1, 2}, and u′ = λ for p = 1. String u′ is obtained from

u ∈ T ∗ by replacing any occurrence of ai in u with bi, for 1 ≤ i ≤ n.
Furthermore, k1 is equal to the value of us1 . . . ust and l1 is equal to the value

of vs1 . . . vstzu, where s, . . . , st ∈ {1, . . . , r}, t ≥ 1, and zu is the sequence of z-s
corresponding to u for u �= λ and zu = λ for u = λ. Then, similarly to the case
of the nodes P(uj ,vj), 1 ≤ j ≤ r, we can show that in two derivation steps we
obtain from v′ either the string of the form

$0,2u
′bi$1,2A

k2
2 $2,AB

l2
2 $2,B,

where k2 = k1 and l2 = l1 · 3dig(zai
) + val(zai), or a string is obtained which has

an occurrence of F at the first position. Then neither this latter string, nor any
string originating from this one (by rewriting or communication) can lead to a
terminal word of Γ . Indeed, if v′ is a proper prefix of v, then v′ will derive in two
derivation steps a string with the trap symbol at the first position, since if $2,B

and thus $2,B,i does not occur in the string, symbol Zi turns to its complement
and then Zi is rewritten to F . Thus, starting from v, we can simulate the effect

Networks of Standard Watson-Crick D0L Systems 45

of appending the pair (ai, zai) to the string uus1 . . . ustvs1 . . . vstzu, obtaining a
string which represents uaius1 . . . ustvs1 . . . vstzuzai .

As in the case of node P(uj ,vj),wuj,vj
), any string which arrives from another

node and is not of the form v, above, either already has an occurrence of the
trap symbol at the first position or will obtain it in the course of the following
derivation and then neither the string nor any string originating from this string
will take part in a derivation in Γ which leads to a terminal word.

Finally, we list the rules in the rule set Pe of the node dedicated for decid-
ing whether the generated string satisfies EPC P or not, that is, whether the
corresponding two strings, α and β′, mentioned in the explanation before the
theorem, are equal or not. This is done by using the possibility of turning to the
complement. To help the reader in understanding how the decision is done, we
list the rules together with a derivation.

We note that analogously to the case of the other nodes, the rules of Pe are de-
fined in such way that only those strings appearing at this node lead to a terminal
word which represent strings of the form x1 . . . xmus1 . . . ustvs1 . . . vstzx1 . . . zxm ,
with xi ∈ T, 1 ≤ i ≤ m, where α = β′ for α = us1 . . . ust and β′ = vs1 . . . vstzx1 ·
. . . · zxm . (See the explanation before the theorem).

Let
$0,pu

′$1,pA
k
p$p,AB

l
p$p,B

be a string at node (Pe, we), where u′ ∈ T ∗
b , and p ∈ {1, 2}. We note that u′ = λ

for p = 1. Then, at the first step, with rules

Ap → A3A3, Bp → B3B3, $p,A → $3,A$3,A,

$p,B → $3,B, $0,p → Z$0,3$0,3, $1,p → $1,3$1,3,

and bi → cici, for 1 ≤ i ≤ n, the string is rewritten to

Z$0,3$0,3u
′′$1,3$1,3(A3A3)k$3,A$3,A(B3B3)l$3,B,

where u′′ = λ for u′ = λ (and p = 1, above) and u′′ = ci1ci1 . . . cimcim for
u′ = bi1 . . . bim , with bij ∈ Tb, for 1 ≤ j ≤ m.

Then, either the string is a good string and then the generation continues
with this string, otherwise the string turns to its complement, obtaining letter
Z at the first position.

The rule set Pe also contains rules Z → F , ci → di, ci → di, where
1 ≤ i ≤ n, A3 → A4, B3 → B4, A4 → F , B4 → F, and X → λ for X ∈
{Z,A3, B3, $3,A, $3,A, $3,B, $3,B, $1,3, $1,3, $0,3, $0,3}. Thus, in the next derivation
step either a string with F at the first position or a string of the form

v′′ = di1di1 . . . dimdimA4
k
Bl

4

is obtained. The string with F at the first position and any other string origi-
nating from it will never lead to a terminal word. Suppose that the derivation
continues with v′′.

46 Erzsébet Csuhaj-Varjú

Then, the derivation at (Pe, we) will lead to a string over T only if k ≤ l,
otherwise the string turns to its complement and at the next derivation step
occurrences of the trap symbol F will be introduced, and thus neither the string
nor any other string originating from it can lead to a terminal word.

Suppose that the derivation leads to a terminal string at node (Pe, we). Then,
having productions di → fi, di → fi, 1 ≤ i ≤ n, A4 → A5, B4 → B5, A5 → F,
B5 → F in Pe, we obtain a string of the form

v′′′ = fi1f i1 . . . fimfimA
k
5B

l
5.

Again, the derivation will lead to a terminal string at this node only if k ≥ l,
otherwise, at the next derivation step occurrences of the trap symbol will be
introduced.

Suppose that a derivation to a terminal word continues at node (Pe, we).
Having rules fi → ai, f i → λ, ai → ai, 1 ≤ i ≤ n, and A5 → λ, B5 → λ we
obtain string ai1 . . . aim . For any other letter X in Σ, not listed with productions
above, the node has the rule X → F.

Notice that the derivation results in the empty word if and only if λ ∈ L(P)
holds.

Now we should prove that Γ derives all words of L but not more.
Suppose that x1 . . . xm ∈ L, xi ∈ T, 1 ≤ i ≤ m, that is, there are in-

dices s1, . . . , st ∈ {1, . . . , r} such that us1 . . . ust = vs1 . . . vstzx1 . . . zxm holds.
Then x1 . . . xm can be obtained in Γ as follows: First E, the axiom of the
node for simulating the effect of adding the pair (us1 , vs1), the axiom of node
for (us1 , vs1), for short, is rewritten to the string representing us1vs1 in the
coded form, and then, by communication the string is forwarded to the node for
(us2 , vs2). Then, the communicated string is rewritten in two derivation steps
at this node and it is forwarded to the next node for (u, v) in the order. We
continue this procedure while the string representing us1 . . . ustvs1 . . . vst is gen-
erated at node for (ustvst). Then, the string is communicated to the node for
(x1, zx1), where it is rewritten in two derivation steps and then it is communi-
cated to the next node in the order, a node for some pair (x, zx). Continuing
this procedure, we finish this part of the generation at node for (xm, zxm) with
a string representing x1 . . . xmus1 . . . ustvs1 . . . vstzx1 . . . zxm . Then the string is
forwarded to node (Pe, we), where in some steps its substring representing αβ′ =
us1 . . . ustvs1 . . . vstzx1 . . . zxm is eliminated and the corresponding letters from
T are introduced. Thus, x1 . . . xm is an element of L(Γ). The procedure for
computing λ ∈ L(P), if λ ∈ L(P), is analogous.

We should prove that Γ does not generate a word not in L. By the definition
of the rule sets of the nodes, we can see that for each string generated at the
node or communicated to the node, the node for the pair (uj, vj), 1 ≤ j ≤ r,
either produces a new string representing a word of one of the forms ujvj or
us1 . . . ustujvs1 . . . vstvj , s1 . . . , st ∈ {1, . . . , r}, t ≥ 1, or it produces a new string
which contains the trap symbol F at the first position which does not make
possible to generate a terminal word. Then this string and any other string orig-
inating from this one is irrelevant from the point of view of generation of terminal

Networks of Standard Watson-Crick D0L Systems 47

words of Γ . Analogously, for each string generated at the node or communicated
to the node, it holds that the node for (ai, zai), 1 ≤ i ≤ n, either produces a
string representing a string of the form uaius1 . . . ustvs1 . . . vstzuzai , u ∈ T ∗, zu

is the sequence of z-s which corresponds to u, or it generates a string with an
occurrence of the trap symbol, F. The latter case leads to strings irrelevant from
the point of view of generation of words of Γ. But, only those strings have no oc-
currence of the trap symbol at the first position at the above two types of nodes
which represent strings that correspond to the respective generation phases of
words of L according to EPC P. Similarly to the above cases, the master node,
(Pe, we), either produces a terminal string (or the empty word) from a string it
has generated or it received by communication, or the node generates a string
with an occurrence of the trap symbol. Thus, any terminal word (including the
empty word) which can be generated by Γ can be generated according to P but
not more. Hence the result.

By standard techniques it can be shown that any language of an extended
NSWD0L system is a recursively enumerable language. Thus we can state the
following theorem:

Theorem 2. The class of languages of ENSWD0L systems is equal to the class
of recursively enumerable languages.

Modifying the proof of Theorem 1, an analogous statement can be given for
the case of communication protocol (suf, a). The idea of the proof is to change
the role of the endmarker symbols $0,p and $p,B, for p = 1, 2, 3, in the procedure
of checking whether the communicated string is a proper subword of the original
string or not. We give this statement without the proof, the details are left to
the reader.

Theorem 3. For every recursively enumerable language L there exists an
ENSWD0L system Γ such that L(suf,a)Γ) = L.

4 Final Remarks

In this paper we examined the computational power of ENSWD0L systems
with a certain type of incomplete information communication, namely where
the nodes communicate good non-empty prefixes (suffixes) of the good strings
they obtained by rewriting. It is an interesting open question how large compu-
tational power can be obtained if some other way of incomplete communication
is chosen. For example, it would be interesting to study the case where the node
communicates an arbitrary non-empty good subword of the good words obtained
by parallel rewriting or the case where the node splits a copy of the word to be
communicated into as many pieces as the number of the other nodes in the net-
work and these splitted subwords are distributed among the different nodes. We
plan to return to these topics in the future.

48 Erzsébet Csuhaj-Varjú

References

1. J. Csima, E. Csuhaj Varjú and A. Salomaa, Power and size of extended Watson-
Crick L systems. Theoretical Computer Science 290 (2003), 1665-1678.

2. E. Csuhaj-Varjú, Computing by networks of Watson-Crick D0L systems. In:
Proc. Algebraic Systems, Formal Languages and Computation. (M. Ito, ed.),
RIMS Kokyuroku 1166, August 2000, Research Institute for Mathematical Sci-
ences, Kyoto University, Kyoto, 43-51.

3. E. Csuhaj-Varjú and A. Salomaa, Networks of Watson-Crick D0L systems. In:
Proc. of the International Conference ”Words, Languages & Combinatorics”,
Kyoto, Japan, 14-18, 2000. (M. Ito and T. Imaoka, eds.), World Scientific,
Singapore, 2003, 134-150.

4. E. Csuhaj-Varjú and A. Salomaa, The Power of Networks of Watson-Crick
D0L Systems. In: Aspects of Molecular Computing. Essays Dedicated to Tom
Head on the Occasion of His 70th Birthday. (N. Jonoska, Gh. Păun, and G.
Rozenberg, eds.), Lecture Notes in Computer Science 2950, Springer, 2004,
106-118.

5. V. Geffert, Context-free-like forms for phrase-structure grammars. Proc.
MFCS’88, LNCS 324, Springer Verlag, 1988, 309-317.

6. Handbook of Formal Languages. Vol. I-III. (G. Rozenberg and A. Salomaa,
eds.), Springer Verlag, Berlin-Heidelberg-New York, 1997.

7. J. Honkala and A. Salomaa, Watson-Crick D0L systems with regular triggers.
Theoretical Computer Science 259 (2001), 689–698.

8. V. Mihalache and A. Salomaa, Watson-Crick D0L systems. EATCS Bulletin
62 (1997), 160-175.

9. V. Mihalache and A. Salomaa, Language-theoretic aspects of DNA complemen-
tarity. Theoretical Computer Science 250 (2001), 163-178.

10. G. Păun, G. Rozenberg and A. Salomaa, DNA Computing. New Computing
Paradigms. Springer-Verlag, Berlin, Heidelberg, New York, 1998.

11. G. Rozenberg and A. Salomaa, The Mathematical Theory of L systems. Aca-
demic Press, New York, London, 1980.

12. A. Salomaa, Turing, Watson-Crick and Lindenmayer. Aspects of DNA Comple-
mentarity. In: Unconventional Models of Computation. (C.S. Calude, J. Casti,
and M. J. Dinneen, eds.), Springer Verlag, Singapore, Berlin, Heidelberg, New
York, 1998, 94-107.

13. A. Salomaa, Watson-Crick Walks and Roads on D0L Graphs. Acta Cybernetica
14 (1) (1999), 179-192.

14. A. Salomaa, Iterated morphisms with complementarity on the DNA alphabet.
In: Words, Semigroups, Transductions. (M. Ito, G. Paun and S. Yu, eds.), World
Scientific, Singapore, 2001, 405-420.

15. A. Salomaa, Uni-transitional Watson-Crick D0L systems. Theoretical Com-
puter Science 281 (2002), 537-553.

16. A. Salomaa and P. Sośık, Watson-Crick D0L systems: the power of one transi-
tion. Theoretical Computer Science 301 (2003), 187-200.

17. P. Sośık, D0L systems + Watson-Crick complement = universal computation.
In: Machines, Computations and Universality. (M. Margenstern and Y. Ro-
gozhin, eds.), Lecture Notes in Computer Science 2055, Springer, 2001, 308-320.

18. P. Sośık, Watson-Crick D0L systems: generative power and undecidable prob-
lems. Theoretical Computer Science 306 (2003), 101-112.

On the Size of Components of

Probabilistic Cooperating Distributed
Grammar Systems�

Erzsébet Csuhaj-Varjú1 and Jürgen Dassow2

1 Computer and Automation Research Institute, Hungarian Academy of Sciences
Kende utca 13-17, H–1111 Budapest, Hungary

csuhaj@sztaki.hu
2 Otto-von-Guericke-Universiät Magdeburg, Fakultät für Informatik

PSF 4120, D–39016 Magdeburg, Germany
dassow@iws.cs,uni-magdeburg.de

Abstract. Probabilistic cooperating distributed grammar systems in-
troduced in [1] are systems of probabilistic grammars in the sense of
[9], i.e., a probability is associated with any transition from one rule to
another rule and with any transition from one probabilistic grammar
to another probabilistic grammar; a probabilistic grammar stops, if the
chosen rule cannot be applied; and the generated language contains only
words where the product of the transitions is larger than a certain cut-
point). We study the families obtained with cut-point 0 by restricting
the number of rules in a probabilistic component. We show that at most
two productions in any component are sufficient to generate any recur-
sively enumerable language. If one restricts to probabilistic components
with one production in any component, then one obtains the family of
deterministic ET0L systems.

1 Introduction

Cooperating distributed grammar systems have been introduced in [3] as a for-
mal language theoretic approach to the blackboard architecture known from the
distributed problem solving. Essentially, such a system consists of some context-
free grammars (called the components) which work on a common sentential form
and where the conditions for a grammar to start and/or to stop are prescribed
in a protocol or derivation mode. The most investigated derivation mode is the
so-called t-mode, where a grammar has to work as long as it can apply some of its
productions, and if a component has finished its derivation, then any other en-
abled component can start. It has been shown in [3] that cooperating distributed
grammar system have the same generative power as ET0L systems known from
� This research was supported in part under grant no. D-35/2000 and HUN009/00

by the Intergovernmental S&T Cooperation Programme of the Office of Research
and Development Division of the Hungarian Ministry of Education and its German
partner, the Federal Ministry of Education and Research (BMBF).

J. Karhumäki et al. (Eds.): Theory Is Forever (Salomaa Festschrift), LNCS 3113, pp. 49–59, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

50 Erzsébet Csuhaj-Varjú and Jürgen Dassow

the theory of developmental or Lindenmayer systems (see [7] and [8]). Further-
more, in [6] it has been proved that any ET0L language can be generated by a
cooperating distributed grammar system where any component has at most five
productions.

Obviously, instead of context-free grammars one can also use another type
of grammars as basic grammars. For instance, in [3] and [11] some variants of
Lindenmayer systems have been taken as basic grammars. In [1], probabilistic
grammars introduced by A. Salomaa in [9] have been used as components, i.e.,
with any transition from one rule to another rule a probability is associated and
the generated language contains only words where the product of the transition
is larger than a certain cut-point. Moreover, in the case of grammar systems a
probability is associated with a transition from one probabilistic grammar to
another one, and in the t-mode of derivation a probabilistic grammar stops, if
after the application of a rule one chooses a rule which cannot be applied. In
[1] it has been shown that any language generated by a probabilistic cooperat-
ing distributed grammar system with cut-point c > 0 is a finite language and
that any recursively enumerable language can be generated by a probabilistic
cooperating distributed grammar system with cut-point 0.

In [2] a theorem analogous to the result of [6] mentioned above has been
given: For any recursively enumerable language L, there is a probabilistic coop-
erating distributed grammar system Γ such that any probabilistic component
of Γ contains at most six productions and L is the language generated by Γ
with cut-point 0. In this paper we improve this result. We show that at most
two productions in the probabilistic components are sufficient to generate (with
cut-point 0) any recursively enumerable language. If one restricts to probabilistic
cooperating distributed grammar systems with one production in any compo-
nent, then one obtains the same generative power as the power of deterministic
ET0L systems.

2 Definitions

An n-dimensional vector (a1, a2, . . . , an) is called probabilistic, if 0 ≤ ai ≤ 1 for
1 ≤ i ≤ n and

∑n
i=1 ai = 1. The cardinality of a (finite) set M is denoted by

#(M). The set of non-empty words over an alphabet V is denoted by V +; if the
empty string, denoted by λ, is included, then we use the notation V ∗.

We recall the notions of matrix grammar, Indian parallel programmed gram-
mars and extended deterministic tabled Lindenmayer systems. For further details
we refer to [5], [10], [8] and [7].

A matrix grammar is a construct G = (N,T, S,M,F) where N and T are
the disjoint alphabets of nonterminals and terminals, respectively, S ∈ N , M =
{m1,m2, . . .mn} is a finite set of finite sequences of context-free productions,
i.e., for 1 ≤ i ≤ n, mi = (Ai1 → wi1, Ai2 → wi2, ..., Airi → wiri) with ri ≥ 1,
Aij ∈ N and wij ∈ (N ∪ T)∗ for 1 ≤ i ≤ n, 1 ≤ j ≤ ri and F is a finite subset
of {Aij → wij | 1 ≤ i ≤ n, 1 ≤ j ≤ ri}. The sequences mi, 1 ≤ i ≤ n, are called
matrices.

On the Size of Components of Grammar Systems 51

Let x and y be two words of (N ∪T)∗. We say that x directly derives y by an
application of mi ∈ M , written as x =⇒mi y if there are words x1, x2 . . . , xri+1

such that x = x1, y = xri+1 and, for 1 ≤ j ≤ ri, one of the following conditions
is satisfied:
i) xj = x′jAijx

′′
j for some x′j , x

′′
j ∈ (N ∪ T)∗ and xj+1 = x′jwijx

′′
j or

ii) Aij does not occur in xj , Aij → wij ∈ F and xj+1 = xj .
The language L(G) generated by a matrix grammar G = (N,T, S,M,F)

consists of all words z ∈ T ∗ such that there is derivation

S =⇒mi1
z1 =⇒mi2

z2 =⇒mi3
. . . =⇒mis

zs = z

for s ≥ 1 and some matrices mi1 ,mi2 , . . . ,mis ∈M .

It is well-known (see [5] for a proof) that the family of languages generated
by matrix grammars coincides with the family L(RE) of recursively enumerable
languages.

We say that a matrix grammar G = (N,T, S,M,F) is in normal form if

– N = N1 ∪N2 ∪ {S,Z} with N1 ∩N2 = ∅, S,Z /∈ N1 ∪N2,
– all matrices of M have one of the following forms

(1) (S → x) with x ∈ L(G), |x| ≤ 1
(2) (S → AX) with A ∈ N1, X ∈ N2,
(3) (A→ w,X → Y) with A ∈ N1, w ∈ (N1 ∪ T)∗, X,Y ∈ N2, X �= Y
(4) (A→ Z,X → Y) with A ∈ N1, X,Y ∈ N2

(5) (A→ w,X → Y) with A ∈ N1, w ∈ T ∗, X ∈ N2, a ∈ T ,
– F consists of all rules of the form A→ Z with A ∈ N1.

For X ∈ N2, we say that m is an X-matrix, if m contains a rule with right hand
side X . By nG(X) we denote the number of X-matrices.

Lemma 1. For any recursively enumerable language L, there is a matrix gram-
mar G in normal form such that L = L(G).

Proof. The statement is shown in Theorem 1.3.7 of [5] for matrix grammars
in accurate binary normal form, which is obtained from our normal form by
deletion of the conditions X �= Y for matrices of type (3). However, it can be
seen from the proof in [5] that our additional condition is satisfied.

An Indian parallel programmed grammar is a construct G = (N,T, S, P)
where any rule p ∈ P has the form p = (A→ w, σ, ϕ) where A→ w is a context-
free production with A ∈ N and w ∈ (N∪T)∗ and σ and ϕ are subsets of P called
the success field and failure field, respectively. The language L(G) generated by
G consists of all words z ∈ T ∗ which can be obtained by a derivation of the form

S = z0 =⇒p1 z1 =⇒p2 z2 =⇒p3 . . . =⇒pn zn = z

52 Erzsébet Csuhaj-Varjú and Jürgen Dassow

where n ≥ 1, and for 1 ≤ i ≤ n− 1, one of the following conditions are satisfied:

i) pi = (Ai → wi, σi, ϕi),
zi−1 = x1Aix2Ai . . . xr−1Aixr with xi ∈ ((N ∪ T) \ {Ai})∗
zi = x1wix2wi . . . xr−1wixr, and
pi+1 ∈ σi,

or
ii) pi = (Ai → wi, σi, ϕi),
Ai does not occur in zi−1,
zi = zi−1, and
pi+1 ∈ ϕi.

An extended deterministic tabled Lindenmayer system (for short EDT0L sys-
tem) is an n+ 3-tuple G = (V, T, h1, h2, . . . , hr, w), where V is an alphabet, the
set T (of terminals) is a subset of V , w ∈ V + is the axiom and, for 1 ≤ i ≤ r,
hi : V → V ∗ is a morphism.

For two strings x = x1x2 . . . xn with n ≥ 1, xi ∈ V for 1 ≤ i ≤ n and y ∈ V ∗

we say that x directly derives y, if there is a morphism hj , 1 ≤ j ≤ r, such
that y = hj(x) = hj(x1)hj(x2) . . . hj(xn). The language L(G) generated by an
EDT0L system is defined as the set of all words over T which can be obtained
from w by a sequence of direct derivation steps, i.e.,

L(G) = {hi1(hi2(. . . (his(w)) . . .)) | 1 ≤ ij ≤ r for 1 ≤ j ≤ s} ∩ T ∗ .

By L(EDT 0L) we denote the family of languages generated by EDT0L sys-
tems.

We now define the central concept of this paper, the probabilistic cooperating
distributed grammar systems.

A probabilistic cooperating distributed grammar system is a construct

Γ = (N,T, S, (P1, δ1, φ1, φ
′
1), (P2, δ2, φ2, φ

′
2), . . . , (Pn, δn, φn, φ

′
n), δ)

where

– N and T are disjoint alphabets of nonterminals and terminals, respectively,
– S called the axiom is an element of N ,
– n is a positive integer,
– for 1 ≤ i ≤ n,

• Pi = {pi1, pi2, . . . , piki} is a finite set of context-free productions (i.e.,
each pij is of the form A→ w with A ∈ N and w ∈ (N ∪T)∗) where the
given order of the ki elements of Pi is fixed,

• δi is a ki-dimensional probabilistic vector, whose j-th component gives
the probability to start a derivation, which uses only rules of Pi, with
the j-th rule pij of Pi,

• φi is a ki-dimensional vector, whose j-th component is a ki-dimensional
probabilistic vector φi(j) = (φij1 , φij2, . . . , φijki) whose k-th component
φijk gives the probability that after an application of pij we apply pik

as the next rule,

On the Size of Components of Grammar Systems 53

• φ′i is a n-dimensional probabilistic vector, whose j-th component φ′i(j)
gives the probability that after an application of the component Pi we
continue with the component Pj ,

– δ is an n-dimensional probabilistic vector, whose i-th component δ(i) gives
the probability that the derivation starts with the i-th component Pi.

The constructs (Pi, δi, φi, φ
′
i), 1 ≤ i ≤ n, are called the components of Γ .

Sometimes we also say that Pi is a component.
Let

D : x =⇒pj1
x1 =⇒pj2

x2 =⇒pj3
. . . =⇒pjs

xs = y

be a derivation which only uses rules of Pi. Shortly, we write

D : x =⇒∗
Pi
y .

We say that D is a t-derivation with respect to Pi, if

i) y is a word over the terminal alphabet T , or
ii) the production pjs+1 ∈ Pi chosen to be applied in the next step cannot
be applied.

With a t-derivation D we associate in case i) or ii) the values

v(D) = δi(j1) · φij1j2 · φij2j3 · · · · · φijs−1js

or
v(D) = δi(j1) · φij1j2 · φij2j3 · · · · · φijs−1js · φijsjs+1 ,

respectively.
Let

D′ : S =⇒∗
Pi1

z1 =⇒∗
Pi2

z1 =⇒∗
Pi3

. . . =⇒∗
Pir−1

zr−1 =⇒∗
Pir

zr = z (1)

be a derivation such that any subderivation

Dj : zj−1 =⇒∗
Pij

zj

is a t-derivation with respect to Pij . With D′ we associate the value

v(D′) = δ(i) ·
r−1∏
j=1

φ′ij
(ij+1) ·

r∏
i=1

v(Di)

(the first factor gives the probability to start with the component Pi1 , the second
factor takes into consideration the transitions from one component to another
one, whereas the third factor measures the derivations Dj). The language L(Γ, c)
with cut-point c consists of all words z ∈ T ∗ which can be obtained by a deriva-
tion D′ of the form (1) such that v(D′) > c.

54 Erzsébet Csuhaj-Varjú and Jürgen Dassow

Our definitions given above differ slightly from the definitions presented in [2].
Especially, we have a more accurate value associated with a derivation. However,
it is easy to see that both definitions are equivalent.

In [1] it has been shown that any language generated by a probabilistic coop-
erating distributed grammar system with cut-point c > 0 is a finite language, and
that any recursively enumerable language can be generated by a probabilistic
cooperating distributed grammar system with cut-point 0. The latter statement
can be seen easily since a probabilistic cooperating distributed grammar system
with cut-point 0 can be transformed in a programmed grammar where the suc-
cess field of a rule pij ∈ Pi consists of all rules pik ∈ Pi such that φijk > 0 and
the failure field of pij consists of all rules prs ∈ Pr, 1 ≤ r ≤ n, with φ′i(r) > 0
and δr(s) > 0.

In this paper we shall discuss only languages with cut-point 0. Therefore we
use the notation L(Γ) instead of L(Γ, 0).

By L(PCDrCF) we denote the family of all languages generated by proba-
bilistic cooperating distributed grammar system Γ with cut-point 0 where each
component of Γ contains at most r productions.

The following lemma immediately follows from the definitions.

Lemma 2. For any r ≥ 1, L(PCDrCF) ⊆ L(PCDr+1CF).

3 Results

We start with an investigation of probabilistic grammar systems where each
component contains only one rule.

Lemma 3. For any probabilistic cooperating distributed grammar system Γ
where each component contains exactly one rule, there is a Indian parallel pro-
grammed grammar G such that L(G) = L(Γ).

Proof. Let Γ = (N,T, S, ({A1 → w1}, δ1, φ1, φ
′
1), . . . , ({An → wn}, δn, φn, φ

′
n), δ)

be an arbitrary probabilistic cooperating distributed grammar system where
each component contains exactly one rule. Then δi = φi(1) = (1) for 1 ≤ i ≤ n.

Let us assume that we have to apply ({Ai → wi}, (1), (1), φ′i) to the sentential
form w. If Ai occurs in w and in wi, then we have to apply the rule Ai → wi ad
infinitum and do not terminate. Thus we do not change the generated language
if we substitute ({Ai → wi}, (1), (1), φ′i) by ({Ai → F}, (1), (1), φ′i) where F
is an additional symbol (because we are not able to terminate the letter F).
Therefore, without loss of generality, we can assume that Ai does not occur in
wi for 1 ≤ i ≤ n.

The application of ({Ai → wi}, (1), (1), φ′i) to w = x1Aix2Ai . . . xkAixk+1

with xj ∈ ((N ∪ T) \ {Ai})∗ leads to w′ = x1wix2wi . . . xkwixk+1, i.e. we have
performed a derivation step as in an Indian parallel mode (see condition i) of
the definition of the derivation step in a Indian parallel programmed grammar).

We now construct the Indian parallel programmed grammar

G = (N ∪ {S′}, T, S′, {p1, p2, . . . , pn}

On the Size of Components of Grammar Systems 55

with

p0 = (S′ → S, {pj | δ(j) > 0}, {pj | δ(j) > 0}) ,
pi = (Ai → wi, {pj | φ′i(j) > 0}, {pj | φi(j) > 0}) for 1 ≤ i ≤ n.

Any derivation in G starts with an application of p0 and leads to S to which
all rules can be applied which correspond to components of Γ whose start proba-
bility is greater than 0. Moreover, in the sequel we have w =⇒ w′ by application
of the component Pi in Γ if and only if we have w =⇒ w′ by application of pi

in G. Therefore L(G) = L(Γ) follows.

Lemma 4. L(EDTOL) ⊆ L(PCD1CF).

Proof. Let L ∈ L(EDT 0L). By [8], Chapter V, Theorem 1.3 (since the con-
struction in its proof gives a EDT0L system, if we start with an EDT0L sys-
tem, this theorem holds for EDT0L systems, too), there is an EDT0L system
G = (V, T, {h1, h2}, w) (with only two homomorphisms) such that L = L(G).
Let

V = {a1, a2, . . . , am}, V ′ = {a′i | 1 ≤ i ≤ m} and V ′′ = {a′′i | 1 ≤ i ≤ m} .
Moreover, if w = b1b2 . . . bn, bi ∈ V for 1 ≤ i ≤ n, then we set w′ = b′1b

′
2 . . . b

′
n and

w′′ = b′′1b
′′
2 . . . b

′′
n. Furthermore, we define the homomorphism h : V ′ → T ∪ {F}

by h(a′) = a for a ∈ T and h(a) = F in the remaining cases.
We now construct the probabilistic CD grammar system

Γ = (V ′∪V ′′∪{S, F}, T, S, (P1, δ1, φ1, φ
′
1), . . . , (P4m+1, δ4m+1, φ4m+1, φ

′
4m+1), δ)

where

δ = (0, 0, . . . , 0, 1) ,
P4m+1 = {S → w′}, δ4m+1 = φ4m+1(1) = (1),

φ′4m+1(j) =

{
1/2 j ∈ {1, 3m+ 1}
0 otherwise

,

Pm = {a′m → a′′m}, δm = φm(1) = (1),

φ′m(j) =

{
1/2 j ∈ {m+ 1, 2m+ 1}
0 otherwise

,

P2m = {a′′m → h1(am)′}, δ2m = φ2m(1) = (1),

φ′2m(j) =

{
1/2 j ∈ {1, 3m+ 1}
0 otherwise

,

P3m = {a′′m → h2(am)′}, δ3m = φ3m(1) = (1),

φ′3m(j) =

{
1/2 j ∈ {1, 3m+ 1}
0 otherwise

,

P4m = {a′′m → h(a′m)}, δ4m = φ4m(1) = (1),
φ′4m = (0, 0, . . . , 0, 1) ,

56 Erzsébet Csuhaj-Varjú and Jürgen Dassow

and for 1 ≤ i ≤ m− 1,

Pi = {a′i → a′′i }, δi = φi(1) = (1),

φ′i(j) =

{
1 j = i+ 1
0 otherwise

,

Pm+i = {a′′i → h1(ai)′}, δm+i = φm+i(1) = (1),

φ′m+i(j) =

{
1 j = m+ i+ 1
0 otherwise

,

P2m+i = {a′′i → h2(ai)′}, δ2m+i = φ2m+i(1) = (1),

φ′2m+i(j) =

{
1 j = 2m+ i+ 1
0 otherwise

,

P3m+i = {a′i → h(a′i)}, δ3m+i = φ3m+i(1) = (1),

φ′3m+i(j) =

{
1 j = m+ i+ 1
0 otherwise

.

By our construction, we have to start with the component P4m+1 which leads
to w′ and we have to continue with P1 or P3m+1.

Let us now assume that we have a sentential form v′ for some v ∈ V ∗ and
that we can apply the components P1 or P3m+1.

Using P3m+1 we substitute all occurrences of a′1 by h(a′1) and have to continue
with P3m+2 which corresponds to a substitution of all occurrences of a′2 by h(a′2)
and so on. After using P4m we have replaced all letters of v′ and obtain h(v′).
We get a word containing an F (and the derivation cannot be terminated) or
the terminal word v.

Using P1 we replace by the use of the component P1, P2, . . . , Pm in succession
all occurrences of primed letters by the corresponding two-primed version, i.e.
we get v′′. Moreover, we have to continue with Pm+1 or P2m+1. In the former
case we apply in succession the components Pm+1, Pm+2, . . . , P2m and replace
each letter a′′i by h1(ai)′. Thus we obtain h1(v)′. In the latter case we obtain
h2(v)′. Therefore we have simulated a derivation step according to the EDT0L
system G.

By these remarks it is obvious that L = L(G) = L(Γ)

Now we turn to probabilistic grammar systems with at most two rules in a
component.

Lemma 5. L(RE) ⊆ L(PCD2CF).

Proof. Let L be a recursively enumerable language. By Lemma 1, there is a
matrix grammar G = (N,T, S,M,F) in normal form such that L = L(G). Let
us assume that, for 1 ≤ i ≤ 5, there are ki matrices of type (i) in M . We set
l0 = 0 and li = k1 + k2 + · · ·+ ki for 1 ≤ i ≤ 5. We number the matrices of type
(i) from li−1 + 1 to li.

On the Size of Components of Grammar Systems 57

We define the probabilistic cooperating distributed grammar system

Γ = (N,T, S, (P1, δ1, φ1, φ
′
1), (P2, δ2, φ2, φ

′
2), . . . , (Pl5+1, δl5+1, φl5+1, φ

′
l5+1), δ)

where the component Pi is associated with the i-th matrix mi, by

δ(i) =

{
1/l2 for 1 ≤ i ≤ l2,
0 for l2 + 1 ≤ l5

(we start with a component associated with a matrix of type (1) or (2)),

Pl5+1 = {S → S}, δl5+1 = (1), φl5+1(1) = (1), φ′l5+1(j) =

{
1 for j = l5 + 1
0 otherwise

(if this component has to be applied to a sentential form containing S, then we
have to replace S → S ad infinitum; if S is not present in the sentential form,
we have to apply without changes this component again and again, i.e., if we
have to apply this component, we cannot terminate),

Pi = {S → x}, δi = (1), φi(1) = (1), φ′i(j) =

{
1 for j = 1
0 otherwise

for 1 ≤ i ≤ l1 and mi = (S → x) (if we start with a component corresponding
to a matrix of type (1), we generate a terminal word and stop the derivation),

Pi = {S → AX}, δi = (1), φi(1) = (1),

φ′i(j) =

{
1/nG(X) if mj is an X-matrix
0 otherwise

for l1 + 1 ≤ i ≤ l2 and mi = (S → AX) (if we start with a component corre-
sponding to a matrix of type (2), we generate AX which is a simulation of an
application of mi and continue with a X-matrix of type (3),(4) or (5) as in the
matrix grammar),

Pi = {A→ w,X → Y }, δi = (1, 0), φi(1) = φi(2) = (0, 1),

φ′i(j) =

{
1/nG(Y) if mj is a Y -matrix
0 otherwise

for l2 + 1 ≤ i ≤ l3 and mi = (A → w,X → Y) (if we apply a component
corresponding to a matrix of type (3) to a word zX , z ∈ (N1∪T)∗, we substitute
one occurrence of A in z by w and the only occurrence of X by Y thus simulating
an application of the matrix and continue with a Y -matrix of type (3),(4) or
(5) as in the matrix grammar; if A does not occur in z, then we immediately
pass without changing the sentential form to the following component which

58 Erzsébet Csuhaj-Varjú and Jürgen Dassow

corresponds to a matrix of (3), (4) or (5), i.e., we have the same situation as
before the application of Pi),

Pi = {A→ F,X → Y }, δi = (0, 1), φi(1) = φi(2) = (1, 0),

φ′i(j) =

{
1/nG(Y) if mj is a Y -matrix
0 otherwise

for l3 + 1 ≤ i ≤ l4 and mi = (A → F,X → Y) (if we apply a component
corresponding to a matrix of type (4) to a word zX , z ∈ (N1 ∪ T)∗, we first
substitute X by Y ; if A is present in z, we replace all occurrences of A by F
such that the derivation cannot be terminated since there is no rule for F ; if A
is not present in z, we continue with a Y -matrix of type (3), (4) or (5) as in
the matrix grammar; therefore in terminating derivations we have simulated a
derivation step according to G),

Pi = {A→ w,X → a}, δi = (1, 0), φi(1) = φi(2) = (0, 1),

φi(j) =

{
1 for j = l5 + 1
0 otherwise

for l4 + 1 ≤ i ≤ l5 and mi = (A → w,X → a) (if we apply a component
corresponding to a matrix of type (5), we again simulate the application of the
matrix; moreover, we have to terminate since otherwise we have to continue with
the last component which results in a non-terminating infinite derivation by the
remark added to this component).

It is easy to see that all sentential forms are terminal words or of the form
zX with z ∈ (N1 ∪ T)∗. Thus by the above explanations any derivation of Γ
simulates a derivation of G. Thus L(Γ) ⊆ L(G).

Moreover, it is easy to see that any derivation of G can be simulated in Γ .
Thus L(G) ⊆ L(Γ), too. Hence L(Γ) = L(G) = L.

We now combine our results to obtain a hierarchy with respect to the number
of rules in the components. We shall obtain a hierarchy with two levels only.

Theorem 1. For any r ≥ 2,

L(EDT 0L) = L(PCD1CF) ⊂= L(PCDrCF) = L(RE) .

Proof. By [4], Lemma 4, any language generated by an Indian parallel pro-
grammed grammar is contained in L(EDT 0L). If we combine this result with
Lemma 3, then we obtain L(PCD1CF) ⊆ L(EDT 0L). Together with Lemma 4
we get L(PCD1CF) = L(EDT 0L).

By Lemma 5, Lemma 2, and the result from [1] that any probabilistic cooper-
ating distributed grammar system generates a recursively enumerable language,
we have

L(RE) ⊆ L(PCD2CF) ⊆ L(PCDrCF) ⊆ L(RE)

for r ≥ 2. This implies the remaining equalities L(PCDrCF) = L(RE) for
r ≥ 2.

On the Size of Components of Grammar Systems 59

References

1. K. Arthi and K. Krithivasan, Probabilistic cooperating distributed grammar sys-
tems. Submitted.

2. K. Arthi, K. Krithivasan and E. Csuhaj-Varjú, On the number of rules in compo-
nents of cooperating distributed grammar systems with probabilities. Journal of
Automata, Languages and Combinatorics 7 (2002) 433-446.

3. E. Csuhaj-Varjú and J. Dassow, Cooperating distributed grammar systems. EIK
26 (1990) 49-63.

4. J. Dassow, On some extensions of Indian parallel context-free grammars. Acta
Cybernetica 4 (1980) 303–310.

5. J. Dassow and Gh. Păun, Regulated Rewriting in Formal Language Theory.
Springer-Verlag, Berlin, 1989.

6. J. Dassow, Gh. Păun and St. Skalla, On the size of components of cooperating
grammars. In: Results and Trends in Computer Science (Eds.: J. Karhumäki, H.
Maurer, G.Rozenberg), LNCS 812, 1994, 325-343.

7. G. T. Herman and G. Rozenberg, Developmental Systems and Languages. North-
Holland, Amsterdam, 1975.

8. G. Rozenberg and A. Salomaa, The Mathematical Theory of L Systems. Academic
Press, New York, 1980.

9. A. Salomaa, Probabilistic and weighted grammars. Inform. Control 15 (1969) 529–
544.

10. A. Salomaa, Formal Languages. Academic Press, New York, 1973.
11. D. Wätjen, On cooperating/distributed limited 0L systems. J. Inform. Proc. Cyb.

EIK 29 (1993) 129–142.

Remarks on Sublanguages Consisting of

Primitive Words of Slender
Regular and Context-Free Languages

Pál Dömösi1�, Carlos Mart́ın-Vide2, and Victor Mitrana2,3

1 Institute of Mathematics and Informatics, Debrecen University
Debrecen, Egyetem tér 1., H-4032, Hungary

domosi@math.klte.hu
2 Research Group on Mathematical Linguistics, Universitat Rovira i Virgili,

PL. Imperial Tarraco, 1, 43005 Tarragona, Spain
cmv@astor.urv.es

3 Faculty of Mathematics and Computer Science, University of Bucharest
Str. Academiei 14, 70109, Bucharest, Romania

vmi@fll.urv.es

Abstract. In this note we investigate the languages obtained by inter-
secting slender regular or context-free languages with the set of all prim-
itive words over the common alphabet. We prove that these languages
are also regular and, respectively, context-free. The statement does not
hold anymore for either regular or context-free languages. Moreover, the
set of all non-primitive words of a slender context-free language is still
context-free. Some possible directions for further research are finally dis-
cussed.

1 Introduction

Combinatorial properties of words and languages play an important role in math-
ematics and theoretical computer science (algebraic coding, combinatorial theory
of words, etc.), see, e.g., [2],[5],[8],[16].

A word is called primitive if it cannot be expressed as the power of another
word. There has been conjectured [1] that the set of all primitive words over a
given alphabet is not context-free. However, this language satisfies different nec-
essary conditions for context-free languages (see [1] for further details). Hope-
fully, this conjecture requires new methods based on the structure of context-free
languages and perhaps will lead to sharper necessary conditions for languages
to be context-free.

A language is slender if the number of its words of any length is bounded by
a constant. It was proved, first in [6], and later, independently, in [13] and [10],
that slender regular and USL-languages coincide. A similar characterization of
� This work was supported by grant from Dirección General de Universidades, Secre-

taŕıa de Estado de Educatión y Universidades, Ministerio de Educación, Cultura y
Deporte (SAB2001-0081), España.

J. Karhumäki et al. (Eds.): Theory Is Forever (Salomaa Festschrift), LNCS 3113, pp. 60–67, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Remarks on Sublanguages Consisting of Primitive Words 61

slender context-free languages was reported in [7] and later, independently, in
[4] and [11]. It was showed that every slender context-free language is UPL and
vice versa, statement conjectured in [10].

It is known that the intersection of a regular language with the set of primitive
words over the common alphabet is not necessarily regular. Since the set of
all primitive words over an alphabet with at least two letters is not regular, it
suffices to take the regular language consisting of all words over such an alphabet.
We prove that if the regular language is slender then the above intersection is
always regular. It immediately follows that the set of all non-primitive words
of a slender regular language is regular too. Similar results hold for slender
context-free languages as well. Furthermore, we prove that, similar to the case
of regular languages, the set of all primitive words of a context-free language is
not necessarily context-free.

This note is organized as follows: in the next section we fix the basic notions
and notations and recall several results which will be used in later reasonings.
The third section is dedicated to the sets of all primitive words of slender reg-
ular languages. The main result of this section states that these languages are
always regular. As an immediate consequence, the set of all non-primitive words
of a slender regular language is regular. A similar investigation is done in the
forth section for slender context-free languages. The obtained results are similar,
namely the sets of all primitive and non-primitive words of a slender context-free
language are both context-free. The paper end by a short section dedicated to
some open problems.

2 Preliminaries

We give some basic notions in formal language theory; for all unexplained notions
the reader is referred to [12].

A word (over Σ) is a finite sequence of elements of some finite non-empty set
Σ. We call the set Σ an alphabet, the elements of Σ letters. If u and v are words
over an alphabet Σ, then their catenation uv is also a word over Σ. Especially,
for every word u over Σ, uλ = λu = u, where λ denotes the empty word. Given
a word u, we define u0 = λ, un = un−1u, n > 0, u∗ = {un : n ≥ 0} and
u+ = u∗ \ {λ}.

The length |w| of a word w is the number of letters in w, where each letter
is counted as many times as it occurs. Thus |λ| = 0. By the free monoid Σ∗

generated by Σ we mean the set of all words (including the empty word λ) having
catenation as multiplication. We set Σ+ = Σ∗ \ {λ}, where the subsemigroup
Σ+ of Σ∗ is said to be the free semigroup generated by Σ. Subsets of Σ∗ are
referred to as languages over Σ.

A primitive word over an alphabet Σ is a nonempty word not of the form
wm for any nonempty word w ∈ Σ+ and integer m ≥ 2. The set of all primitive
words over Σ will be denoted by Q(Σ), or simply by Q if Σ is understood. Q has
received special interest: Q and Σ+ \Q play an important role in the algebraic
theory of codes and formal languages (see [8] and [16]).

62 Pál Dömösi, Carlos Mart́ın-Vide, and Victor Mitrana

We denote by card(H) the cardinality of the finite set H . A language L ⊆ Σ∗

is said to be k-slender if card({w ∈ L : |w| = n}) ≤ k, for every n ≥ 0. A
language is slender if it is k-slender for some positive integer k. A 1-slender
language is called a thin language. A language L ⊆ Σ∗ is said to be a union of
single loops (or, in short, USL) if for some positive integer k and words ui, wi ∈
Σ∗, wi ∈ Σ+, 1 ≤ i ≤ k,

(∗) L =
k⋃

i=1

uiv
∗
iwi.

A language L ⊆ Σ∗ is called a union of paired loops (or UPL, in short) if for
some positive k and words ui, wi, yi ∈ Σ∗, vi, xi ∈ Σ+, 1 ≤ i ≤ k,

(∗∗) L =
k⋃

i=1

{uiv
n
i wix

n
i yi : n ≥ 0}.

For a USL (or UPL) language L the smallest k such that (∗) (or (∗∗)) holds is
referred to as the USL-index (or UPL-index) of L. A USL language L is said to
be a disjoint union of single loops (DUSL, in short) if the sets in the union (*)
are pairwise disjoint. In this case the smallest k such that (*) holds and the k
sets are pairwise disjoint is referred to as the DUSL-index of L. The notions of a
disjoint union of paired loops (DUPL) and DUPL-index are defined analogously
considering the relation (**).

For slender regular languages, we have the following characterization, first
proved in [6], and later, independently, in [13] and [10] ([14] and [15] are an
extended abstract and a revised form, respectively, of [13]).

Theorem 1. For a given language L, the following conditions are equivalent:
(i) L is regular and slender.
(ii) L is USL.
(iii) L is DUSL.

Moreover, if L is regular and slender, then the USL- and DUSL-indices of L are
effectively computable.

The following result is taken from [10].

Theorem 2. Every UPL language is DUPL, slender, linear and unambiguous.

The next characterization of slender context-free languages was proved in [7]
and later, independently, in [4] and [11]. It was also conjectured in [10].

Theorem 3. Every slender context-free language is UPL.

Any cyclic permutation of a primitive (non-primitive) word remains primitive
(non-primitive) as formally stated in [16, 17].

Theorem 4. Let i ≥ 1 and uv ∈ {pi : p ∈ Q}. Then vu ∈ {pi : p ∈ Q}, too. In
other words, the sets {pi : p ∈ Q} (i ≥ 1) are closed under cyclic permutations
of words.

Remarks on Sublanguages Consisting of Primitive Words 63

We shall use the following result from [18].

Theorem 5. Let f, g ∈ Q, f �= g. Then fgn ∈ Q or fgn+1 ∈ Q for all n ≥ 2.

Let u �= λ and let f be a primitive word with an integer k ≥ 1 having u = fk.
We write

√
u = f and call f the primitive root of the word u. The uniqueness of

primitive root was proved in [9] (see also [16]).

Theorem 6. If u �= λ, then there exists a unique primitive word f and a unique
integer k ≥ 1 such that u = fk.

The next statement, useful in what follows, is also from [9].

Theorem 7. Let f, g ∈ Q, f �= g. Then fmgn ∈ Q for all m ≥ 2, n ≥ 2.

The following result reported in [2, 3] will also be applied in the sequel. (For
a weaker version of this statement see also [16].)

Theorem 8. Let u and v be two nonempty words, and, p, q ≥ 0 integers. If up

and vq contain a common prefix or suffix of length |u|+ |v| − gcd(|u|, |v|) (where
gcd(|u|, |v|) denotes the greatest common divisor of |u| and |v|) then u = wm

and v = wn, for some word w and positive integers m,n.

Finally, we need one more result taken from [18].

Theorem 9. Let p, q ∈ Q, p �= q. Then card(p+q+ \Q) ≤ 1.

3 Intersecting Slender Regular Languages with Q

We start with some preliminary results. First it is easy to note that Theorem
9 can be extended, in a certain sense, to arbitrary words instead of primitive
ones. Assume Σ = {a, b}, p = a2, q = ba2b. Then, of course, p, pq /∈ Q. Theorem
7 implies pqn ∈ Q,n ≥ 2, hence card(pq+ \ Q) = 2 In general, we have the
following result.

Lemma 1. Let u, v ∈ Σ+ such that
√
u �= √v. Then card(uv∗ \Q) ≤ 2.

Proof. By Theorem 9, (
√
u)+(

√
v)+ \ Q has at most one element. Therefore,

uv∗ \Q has at most one element if u ∈ Q. Assume u ∈ Σ+ \Q and let u = (
√
u)s

for some s > 1. Then, by Theorem 7, uvn ∈ Q whenever n ≥ 2. Therefore, uv∗

has at most two non-primitive words. �

Next we prove the following statement.

Lemma 2. Let u,w ∈ Σ∗ and v ∈ Σ+.
(i) If uw = λ, then uv∗w \Q = {λ}.
(ii If uw �= λ and

√
wu �= √v, then card(uv∗w \Q) ≤ 2.

64 Pál Dömösi, Carlos Mart́ın-Vide, and Victor Mitrana

Proof. Using Theorem 4, it is enough to prove that card(wuv∗\Q) ≤ 2 whenever
uw, v ∈ Σ+ such that

√
wu �= √v. But this is a direct consequence of Lemma 1.

�

Now we can state the main result of this section.

Theorem 10. The family of slender regular languages is closed under intersec-
tion with the set of all primitive words.

Proof. Let L be a slender regular language; by Theorem 1 L is a DUSL, hence
L =

⋃k
i=1 uiv

∗
i wi for some positive integer k and words ui, vi, wi, 1 ≤ i ≤ k, such

that uiv
∗
iwi ∩ ujv

∗
jwj = ∅ for all 1 ≤ i �= j ≤ k. If

√
wiui =

√
vi or uiwi = λ

for some i, then all words in the set uiv
+
i wi are non-primitive. If

√
wiui �= √vi,

then each set uiv
∗
iwi contains at most two non-primitive words. Therefore,

L ∩Q = F ∪
⋃
i∈I

(uiv
∗
i wi \Ri),

where I = {i : 1 ≤ i ≤ k,
√
wiui �= √vi}, F = {uiwi : 1 ≤ i ≤ k, i /∈ I, uiwi ∈

Q}, and Ri, i ∈ I are finite sets containing at most two words. By the closure
properties of regular languages it follows that L ∩Q is regular. The slenderness
of L ∩Q is obvious. �

Since the class of regular languages is closed under set difference, by Theorem
10 we also have:

Corollary 1. The class of slender regular languages is closed under set differ-
ence with the language of primitive words.

4 Intersecting Slender Context-Free Languages with Q

Now we start a similar investigation to that from the previous section for the
class of slender context-free languages. Again, we first need some preliminary
results.

Lemma 3. Let u,w, y ∈ Σ∗, v, x ∈ Σ+. If {k :
√
yuvkw =

√
x} is a finite set,

then {uvnwxny : n ≥ 0} \Q is finite as well.

Proof. Let us first consider the case uwy = λ. Clearly,
√
v �= √x, otherwise the

set {k :
√
yuvkw =

√
x} would be infinite. Then the statement follows from

Theorem 7.
Assume now that uwy �= λ and let k0 be the maximal k such that

√
yuvkw =√

x, therefore
√
yuvnw �= √x for any n ≥ k0, Let n >max(k0, 3).

If yuvnw /∈ Q, then by Theorem 7 we infer that yuvnwxn ∈ Q, hence, by
Theorem 4, uvnwxny ∈ Q.

If yuvnw ∈ Q, then by Theorem 5 and the choice of n, yuvnwxn ∈ Q holds.
�

Remarks on Sublanguages Consisting of Primitive Words 65

Lemma 4. Let u,w, y ∈ Σ∗, v, x ∈ Σ+ such that the set {k :
√
yuvkw =

√
d}

is infinite. Then {uvnwxny : n ≥ 1} ∩Q = ∅.
Proof. Case 1. uwy = λ. Then, since {k :

√
yuvkw =

√
x} is infinite, there exist

infinitely many k ≥ 1 with
√
vk =

√
x. On the other hand, for every k ≥ 1, we

have
√
vk =

√
x if and only if

√
v =

√
x. But this implies vkxk /∈ Q, k ≥ 1.

Case 2. uwy �= λ. First we prove that
√
wyu =

√
v. Indeed, assume

√
wyu �=√

v. If wyu /∈ Q, then by Theorem 7, wyuvn ∈ Q,n ≥ 2. If wyu ∈ Q, then by
Theorem 5, wyuvn ∈ Q,n ≥ 3. Therefore, by Theorem 4, yuvnw ∈ Q, n ≥ 3.
But then for every s, t ≥ 3, we obtain

√
yuvsw =

√
yuvtw if and only if s = t.

Therefore, if
√
yuvkw =

√
x then

√
yuvk+�w �= √x, for any � ≥ 1, which implies

that {k :
√
yuvkw =

√
x} is finite, a contradiction. Thus, we have

√
wyu =

√
v

(with yuw �= λ). Furthermore,
√
yuvsw =

√
yuvtw, for all s, t ≥ 1.

On the other hand, since {k :
√
yuvkw =

√
x} is infinite, there exist infinitely

many k ≥ 1 with
√
yuvkw =

√
x. Hence, using

√
yuvsw =

√
yuvtw for all

s, t ≥ 1, we obtain
√
yuvkw =

√
x for all k ≥ 1. Thus, we get {uvnwxnw: n ≥ 1}

∩Q = ∅ as we stated. �

As a consequence, we have the following result similar to Theorem 10 and
Corollary 1. Note that unlike the family of regular languages, the family of
context-free languages is not closed under set difference.

Theorem 11. The class of slender context-free languages is closed under inter-
section and set difference with the language of primitive words.

Proof. Let L be a slender context-free language; by Theorems 3 and 2 L is
a DUPL. Consequently, L =

⋃k
i=1 uiv

∗
iwix

∗
i yi for some positive integer k and

words ui, vi, wi, xi, yi, 1 ≤ i ≤ k, such that uiv
∗
iwix

∗
i yi ∩ ujv

∗
jwjx

∗
jyj = ∅ for all

1 ≤ i �= j ≤ k.
By Lemma 3, if {p :

√
yiuiv

p
iwi =

√
xi} is a finite set, then uiv

∗
iwix

∗
i yi

contains a finite set of non-primitive words.
By Lemma 4, if {p :

√
yiuiv

p
iwi =

√
xi} is an infinite set, then uiv

∗
iwix

∗
i yi

contains a primitive word only, provided that uiwiyi ∈ Q, or no primitive word,
otherwise.

In conclusion
L ∩Q = F ∪

⋃
i∈I

(uiv
∗
i wix

∗
i yi \Ri),

where I = {i : 1 ≤ i ≤ k, {p :
√
yiuiv

p
iwi =

√
xi} is a finite set }, F = {uiwiyi :

1 ≤ i ≤ k, i /∈ I, uiwiyi ∈ Q}, and Ri, i ∈ I are finite sets. By the closure
properties of context-free languages it follows that L ∩Q is context-free.

Analogously,

L \Q = (
⋃
i∈I

Ri) ∪
⋃
i/∈I

(uiv
∗
iwix

∗
i yi \ F),

where I, F and Ri are the same sets as above. Obviously, L \Q is also context-
free.

66 Pál Dömösi, Carlos Mart́ın-Vide, and Victor Mitrana

In both cases, the languages are slender since they are sublanguages of a
slender language. �

This result does not hold anymore for arbitrary context-free languages. In-
deed, let us take the well-known context-free language L = {wwR : w ∈ {a, b}+},
where wR s the mirror image of the word w. We use the pumping lemma for
showing that L∩Q is not context-free. Clearly, x = anbananban lies in L∩Q for
arbitrarily large n. However, any attempt to pump two subwords of x satisfying
the requirements of pumping lemma leads to a word which cannot be at the
same time in L and primitive. We can state this as:

Theorem 12. The family of context-free languages is not closed under inter-
section with the language of primitive words.

5 Final Remarks

We finish this note with a brief discussion on possible directions, which appears
of interest to us, for further research. There are a lot of subclasses of regular
and context-free languages: locally-testable, poly-slender, Parikh-slender, dense,
complete, periodic, quasi-periodic, etc. A natural continuation is to investigate
which of these classes are closed under the intersection with the language of
primitive words. Alternatively, in some cases, it appears attractive to study
when the intersection of languages in these classes and the language of primitive
words leads to a regular or context-free language.

References

1. P. Dömösi, S. Horvath, M. Ito, Formal languages and primitive words, Publ. Math.
Debrecen 42 (1993) 315–321.

2. N.J. Fine, H.S. Wilf, Uniqueness theorems for periodic functions, Proceedings of
the American Mathematical Society 16 (1965) 109-114.

3. M. Harrison, Introduction to Formal Language Theory, Addison-Wesley, Reading,
Mass. 1978.

4. L. Ilie, On a conjecture about slender context-free languages, Theoret. Comput.
Sci. 132 (1994) 427-434.

5. B. Imreh, M. Ito, On some special classes of regular languages. In: Jewels are
Forever (J. Karhumäki, H. Maurer, G. Păun, G. Rozenberg, eds.) Springer-Verlag
1999, 25-34.

6. M. Kunze, H. J. Shyr, G. Thierrin, h-bounded and semidiscrete languages, Inform.
Control 51 (1981) 147–187.

7. M. Latteux, G. Thierrin, Semidiscrete context-free languages, Internat. J. Comput.
Math. 14 (1983) 3–18.

8. M. Lothaire, Combinatorics on Words, Addison-Wesley 1983.
9. R.C. Lyndon, M.P. Schützenberger, The equation aM = bNcP in a free group,

Michigan Math. J. 9 (1962) 289–298.
10. G. Păun, A. Salomaa, Thin and slender languages, Discrete Appl. Math. 61 (1995)

257-270.

Remarks on Sublanguages Consisting of Primitive Words 67

11. D. Raz, Length considerations in context-free languages, Theoret. Comput. Sci.
183 (1997) 21-32.

12. A. Salomaa, Formal Languages, Academic Press NY, 1973.
13. J. Shallit, Numeration systems, linear recurrences, and regular sets. Research Re-

port CS-91-32, July, 1991, Computer Science Department, University of Waterloo,
Canada.

14. J. Shallit, Numeration systems, linear recurrences, and regular sets. (Extended
abstract.) In: Proc. ICALP’92, LNCS 623, Springer-Verlag, Berlin, 1992, 89–100.

15. J. Shallit, Numeration systems, linear recurrences, and regular sets. Information
and Computation 113 (1994) 331–347.

16. H.J. Shyr, Free Monoids and Languages, Ho Min Book Company, Taiwan, 1991.
17. H.J. Shyr, G. Thierrin, Disjunctive languages and codes, FCT’77, LNCS 56,

Springer-Verlag, Berlin, 1977, 171–176.
18. H.J. Shyr, S.S. Yu, Non-primitive words in the language p+q+, Soochow J.Math.

20 (1994) 535–546.

A Semiring-Semimodule Generalization of

ω-Context-Free Languages�

Zoltán Ésik1 and Werner Kuich2

1 University of Szeged
ze@inf.u-szeged.hu

2 Technische Universität Wien
kuich@tuwien.ac.at

Abstract. We develop an algebraic theory on semiring-semimodule pairs
for ω-context-free languages. We define ω-algebraic systems and charac-
terize their solutions of order k by behaviors of algebraic finite automata.
These solutions are then set in correspondence to ω-context-free lan-
guages.

1 Introduction

The purpose of our paper is to give an algebraic approach independent of any
alphabets and languages for ω-context-free languages. The paper continues the
research of Ésik, Kuich [5–7] and uses again pairs consisting of a semiring and
a semimodule, where the semiring models a language with finite words and the
semimodule models a language with ω-words.

The paper consists of this and two more sections. We assume the reader of
this paper to be familiar with the definitions of Ésik, Kuich [5–7]. But to increase
readibility, we repeat the necessary definitions concerning semiring-semimodule
pairs and quemirings in this section. In Section 2, ω-algebraic systems and
ω-algebraic power series are considered. The solutions of order k of these ω-
algebraic systems are characterized by behaviors of algebraic finite automata.
The ω-algebraic systems and ω-algebraic power series are then connected in Sec-
tion 3 to ω-context-free grammars and ω-context-free languages, respectively.

Suppose that S is a semiring and V is a commutative monoid written addi-
tively. We call V a (left) S-semimodule if V is equipped with a (left) action

S × V → V

(s, v) !→ sv

subject to the following rules:

s(s′v) = (ss′)v, (s+ s′)v = sv + s′v, s(v + v′) = sv + sv′,

1v = v, 0v = 0, s0 = 0,

� Partially supported by Aktion Österreich-Ungarn, Wissenschafts- und Erziehungsko-
operation, Projekt 53ÖU1. Additionally, the first author was supported, in part, by
the National Foundation of Hungary for Scientific Research, grant T 35163.

J. Karhumäki et al. (Eds.): Theory Is Forever (Salomaa Festschrift), LNCS 3113, pp. 68–80, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

A Semiring-Semimodule Generalization of ω-Context-Free Languages 69

for all s, s′ ∈ S and v, v′ ∈ V . When V is an S-semimodule, we call (S, V) a
semiring-semimodule pair.

Suppose that (S, V) is a semiring-semimodule pair such that S is a starsemir-
ing and S and V are equipped with an omega operation ω : S → V . Then we
call (S, V) a starsemiring-omegasemimodule pair.

Ésik, Kuich [5] define a complete semiring-semimodule pair to be a semiring-
semimodule pair (S, V) such that S is a complete semiring and V is a complete
monoid, and an infinite product operation

∏
is defined, mapping infinite se-

quences over S to V . Moreover, the infinite sums and products have to satisfy
certain conditions assuring that computations with these obey the usual laws.

Suppose that (S, V) is complete. Then we define

s∗ =
∑
i≥0

si, sω =
∏
i≥1

s,

for all s ∈ S. This turns (S, V) into a starsemiring-omegasemimodule pair.
Following Bloom, Ésik [2] we define a matrix operation ω : Sn×n → V n×1

on a starsemiring-omegasemimodule pair (S, V) as follows. When n = 0, Mω is
the unique element of V 0, and when n = 1, so that M = (a), for some a ∈ S,
Mω = (aω). Assume now that n > 1 and decompose M into blocks a, b, c, d with

a of dimension 1× 1 and d of dimension (n− 1) × (n− 1): M =
(
a b
c d

)
. Then

Mω =
(

(a+ bd∗c)ω + (a+ bd∗c)∗bdω

(d+ ca∗b)ω + (d+ ca∗b)∗caω

)
.

Moreover, we define matrix operations ωk : Sn×n → V n×1, 0 ≤ k ≤ n, as
follows. Assume that M ∈ Sn×n is decomposed into blocks a, b, c, d with a of

dimension k × k and d of dimension (n − k) × (n − k): M =
(
a b
c d

)
. Then

Mωk =
(

(a+ bd∗c)ω

d∗c(a+ bd∗c)ω

)
. Observe that Mω0 = 0 and Mωn = Mω.

Suppose that (S, V) is a semiring-semimodule pair and consider T = S × V .
Define on T the operations

(s, u) · (s′, v) = (ss′, u+ sv), (s, u) + (s′, v) = (s+ s′, u+ v)

and constants 0 = (0, 0) and 1 = (1, 0). Equipped with these operations and
constants, T satisfies the equations

(x+ y) + z = x+ (y + z), x+ y = y + x, x+ 0 = x, (1)
(x · y) · z = x · (y · z), x · 1 = x, 1 · x = x, (2)

(x+ y) · z = (x · z) + (y · z), (3)
0 · x = 0. (4)

Elgot[4] also defined the unary operation ¶ on T : (s, u)¶ = (s, 0). Thus, ¶ selects
the “first component” of the pair (s, u), while multiplication with 0 on the right

70 Zoltán Ésik and Werner Kuich

selects the “second component”, for (s, u) · 0 = (0, u), for all u ∈ V . The new
operation satisfies:

x¶ · (y + z) = (x¶ · y) + (x¶ · z), (5)
x = x¶+ (x · 0), x¶ · 0 = 0, (6)

(x + y)¶ = x¶+ y¶, (x · y)¶ = x¶ · y¶. (7)

Note that when V is idempotent, also

x · (y + z) = x · y + x · z

holds.
Elgot[4] defined a quemiring to be an algebraic structure T equipped with

the above operations ·,+,¶ and constants 0, 1 satisfying the equations (1)–(4)
and (5)–(7). It follows from the axioms that x¶¶ = x¶, for all x in a quemiring
T . Moreover, x¶ = x iff x · 0 = 0.

When T is a quemiring, S = T¶ = {x¶ | x ∈ T } is easily seen to be a
semiring. Moreover, V = T 0 = {x · 0 | x ∈ T } contains 0 and is closed under
+, moreover, sx ∈ V for all s ∈ S and x ∈ V . Each x ∈ T may be written in a
unique way as the sum of an element of T¶ and a sum of an element of T 0, viz.
x = x¶+ x · 0. Sometimes, we will identify S ×{0} with S and {0}× V with V .
It is shown in Elgot [4] that T is isomorphic to the quemiring S×V determined
by the semiring-semimodule pair (S, V).

Suppose now that (S, V) is a starsemiring-omegasemimodule pair. Then we
define on T = S × V a generalized star operation:

(s, v)⊗ = (s∗, sω + s∗v)

for all (s, v) ∈ T .

2 ω-Algebraic Systems

In the sequel, T is a quemiring, Y = {y1, . . . , yn} is a set of (quemiring) vari-
ables, T¶ = S and T 0 = V . A product term t has the form t(y1, . . . , yn) =
s0yi1s1 . . . sk−1yik

sk, k ≥ 0, where sj ∈ S−{0}, 0 ≤ j < k, sk ∈ S, and yij ∈ Y .
The elements sj are referred to as coefficients of the product term. If k ≥ 1, we
do not write down coefficients that are equal to 1.

A sum-product term p is a finite sum of product terms tj , i. e.,

p(y1, . . . , yn) =
∑

1≤j≤m

tj(y1, . . . , yn) .

The coefficients of all the product terms tj , 1 ≤ j ≤ m, are referred to as
the coefficients of the sum-product term p. Observe that each sum-product term
represents a polynomial of the polynomial quemiring over the quemiring T in the
set of variables Y in the sense of Lausch, Nöbauer [10], Chapter 1.4. For a subset

A Semiring-Semimodule Generalization of ω-Context-Free Languages 71

S′ ⊆ S, we denote the collection of all sum-product terms with coefficients in
S′ by S′(Y). Observe that the sum-product terms in S(Y) represent exactly the
polynomials of the subquemiring of the polynomial quemiring that is generated
by S ∪ Y .

We are only interested in the mappings induced by sum-product terms. These
mappings are polynomial functions on T in the sense of Lausch, Nöbauer [10],
Chapter 1.6.

Each product term t (resp. sum-product term p) with variables y1, . . . , yn

induces a mapping t̄ (resp. p̄) from T n into T . For a product term t represented
as above, the mapping t̄ is defined by

t̄(τ1, . . . , τn) = s0τi1s1 . . . sk−1τik
sk ,

and for a sum-product term p, represented by a finite sum of product terms tj
as above, the mapping p̄ is defined by

p̄(τ1, . . . , τn) =
∑

1≤j≤m

t̄j(τ1, . . . , τn)

for all (τ1, . . . , τn) ∈ T n.
Let (S, V) be a semiring-semimodule pair and let S × V be the quemiring

determined by it. Let S′ ⊆ S. An S′-algebraic system (with variables y1, . . . , yn)
over the quemiring S × V is a system of equations

yi = pi, 1 ≤ i ≤ n ,

where each pi is a sum-product term in S′(Y). A solution to this S′-algebraic
system is given by (τ1, . . . , τn) ∈ T n such that τi = p̄i(τ1, . . . , τn), 1 ≤ i ≤ n.

Often it is convenient to write the S′-algebraic system yi = pi, 1 ≤ i ≤ n, in
matrix notation. Defining the two column vectors

y =

⎛⎜⎝ y1
...
yn

⎞⎟⎠ and p =

⎛⎜⎝ p1

...
pn

⎞⎟⎠
we can write yi = pi, 1 ≤ i ≤ n, in the matrix notation

y = p(y) or y = p .

A solution to y = p(y) is now given by τ ∈ T n such that τ = p̄(τ) with p̄ =
(p̄i)1≤i≤n.

Consider now a product term t(y1, . . . , yn) = s0yi1s1 . . . sk−1yik
sk and let

τi = (σi, ωi) ∈ S × V , 1 ≤ i ≤ n. Then

t̄(τ1, . . . , τn) = s0(σi1 , ωi1)s1 . . . sk−1(σik
, ωik

)sk =
(s0σi1s1 . . . sk−1σik

sk, s0ωi1 + s0σi1s1ωi2 + · · ·+ s0σi1s1 . . . sk−2σik−1sk−1ωik
) .

By definition, for σ = (σ1, . . . , σn) ∈ Sn,

tσ(z1, . . . , zn) = s0zi1 + s0σi1s1zi2 + · · ·+ s0σi1s1 . . . sk−2σik−1sk−1zik

72 Zoltán Ésik and Werner Kuich

and, if p(y1, . . . , yn) =
∑

1≤j≤m tj(y1, . . . , yn),

pσ(z1, . . . , zn) =
∑

1≤j≤m

(tj)σ(z1, . . . , zn) .

Here z1, . . . , zn are variables over the semimodule V . We now obtain

t̄(τ1, . . . , τn) = t̄(σ1, . . . , σn) + t̄σ(ω1, . . . , ωn)

and
p̄(τ1, . . . , τn) = p̄(σ1, . . . , σn) + p̄σ(ω1, . . . , ωn) .

Moreover,

p̄(τ1, . . . , τn)¶ = p̄(σ1, . . . , σn) and p̄(τ1, . . . , τn).0 = p̄σ(ω1, . . . , ωn) .

In the next theorem, y (resp. x and z) denotes a column vector

⎛⎜⎝ y1
...
yn

⎞⎟⎠ (resp.

⎛⎜⎝ x1

...
xn

⎞⎟⎠ and

⎛⎜⎝ z1
...
zn

⎞⎟⎠), where the yi (resp. xi and zi) are variables over S × V

(resp. S and V).
In the sequel, S′ will always denote a subset of S containing 0 and 1. The

S′-linear systems (over V) occuring in the next theorem are defined in Ésik,
Kuich [7] before Theorem 4.1. The S′-algebraic systems (over S) occuring in the
next theorem are defined in Kuich [9].

Theorem 2.1 Let S × V be a quemiring and let y = p(y) be an S′-algebraic
system over S × V . Then (σ, ω) ∈ (S × V)n is a solution of y = p(y) iff σ is a
solution of the S′-algebraic system x = p(x) over S and ω is a solution of the
Alg(S′)-linear system z = pσ(z) over V .

Proof. τ = (σ, ω) is a solution ⇔ τ = p̄(τ) = p̄(σ) + p̄σ(ω) ⇔ σ = p̄(σ) and
ω = p̄σ(ω). ��

The following definition is given just for the purpose of the present paper.
A semiring-semimodule pair (S, V) is called continuous if (S, V) is a complete
semiring-semimodule pair and S is a continuous semiring. A quemiring is called
continuous if it is determined by a continuous semiring-semimodule pair.

Consider an S′-algebraic system y = p(y) over a continuous quemiring S×V .
Then the least solution of the S′-algebraic system x = p(x) over S, say σ, exists.
Moreover, write the Alg(S′)-linear system z = pσ(z) over V in the form z = Mz,
where M is an n × n-matrix. Then, by Theorem 4.1 of Ésik, Kuich [7], Mωk

for 0 ≤ k ≤ n is a solution of z = pσ(z). Hence, by Theorem 2.1, (σ,Mωk),
0 ≤ k ≤ n, is a solution of y = p(y). Given a k ∈ {0, 1, . . . , n}, we call this
solution the solution of order k of y = p(y). By ω-Alg(S′) we denote the collection
of all components of solutions of order k of S′-algebraic systems over S × V .

A Semiring-Semimodule Generalization of ω-Context-Free Languages 73

We now consider a continuous semiring-semimodule pair (S〈〈A∗〉〉, S〈〈Aω〉〉),
where S is a commutative (continuous) semiring and A is an alphabet, and the
continuous quemiring S〈〈A∗〉〉 × S〈〈Aω〉〉.

Let SA∗ = {sw | s ∈ S, w ∈ A∗}. Then ω-Alg(SA∗) is equal to the collection
of the components of the solutions of order k of SA∗-algebraic systems over
S〈〈A∗〉〉 × S〈〈Aω〉〉 yi = pi, 1 ≤ i ≤ n, where pi is a polynomial in S〈(A ∪ Y)∗〉.
This is due to the commutativity of S: any polynomial function that is induced
by a sum-product term of SA∗(Y) is also induced by a polynomial of S〈(A∪Y)∗〉
and vice versa. We denote ω-Alg(SA∗) by Sω-alg〈〈A∗, Aω〉〉. The SA∗-algebraic
systems are called ω-algebraic systems (over S and A) and the power series in
Sω-alg〈〈A∗, Aω〉〉 are called ω-algebraic power series (over S and A).

Consider now a product term in S〈(A ∪ Y)∗〉
t(y1, . . . , yn) = sw0yi1w1 . . . wk−1yik

wk ,

where s ∈ S and wi ∈ A∗, 1 ≤ i ≤ k. By definition, for x = (xi)1≤i≤n,
tx(x1, . . . , xn, z1, . . . , zn) = sw0zi1 + sw0xi1w1zi2 + · · · + sw0xi1w1 . . .
wk−2xik−1wk−1zik

, and, if p(y1, . . . , yn) =
∑

1≤j≤m tj(y1, . . . , yn), then

px(x1, . . . , xn, z1, . . . , zn) =
∑

1≤j≤m

(tj)x(x1, . . . , xn, z1, . . . , zn) .

Here x1, . . . , xn (resp. z1, . . . , zn) are variables over S (resp. V). Observe that,
for σ ∈ (S〈〈A∗〉〉)n, we obtain px(σ1, . . . , σn, z1, . . . , zn) = pσ(z1, . . . , zn).

Given an ω-algebraic system y = p(y) over S〈〈A∗〉〉×S〈〈Aω〉〉, we call x = p(x),
z = px(x, z) the mixed ω-algebraic system over (S〈〈A∗〉〉, S〈〈Aω〉〉) induced by
y = p(y).

Write z = px(x, z) in the form z = M(x)z, where M(x) is an n× n-matrix.
Then (σ,M(σ)ωk) for 0 ≤ k ≤ n is a solution of x = p(x), z = px(x, z). Moreover,
it is the solution of order k of y = p(y).

3 ω-Context-Free Grammars

A mixed ω-context-free grammar

G = (n,A, P, j, k)

is given by

(i) an alphabet X = {x1, . . . , xn} of variables for finite derivations and an
alphabet Z = {z1, . . . , zn} of variables for infinite derivations, n ≥ 1, X ∩
Z = ∅;

(ii) an alphabet A of terminal symbols, A ∩ (X ∪ Z) = ∅;
(iii) a finite set of productions of the form x → α, x ∈ X , α ∈ (X ∪ A)∗, or

z → αz′, z, z′ ∈ Z, α ∈ (X ∪A)∗;
(iv) the startvariable xj (resp. zj) for finite (resp. infinite) derivations, 1 ≤ i ≤ n;
(v) the set of repeated variables for infinite derivations {z1, . . . , zk}, 0 ≤ k ≤ n.

74 Zoltán Ésik and Werner Kuich

A finite leftmost derivation (with respect to G) α⇒∗
L w, α ∈ (X∪A)∗, w ∈ A∗, is

defined as usual. An infinite leftmost derivation (with respect to G) π : z ⇒ω
L w,

z ∈ Z, w ∈ Aω , is defined as follows:

π : z ⇒L α1zi1 ⇒∗
L w1zi1 ⇒L w1α2zi2 ⇒∗

L w1w2zi2 ⇒L · · · ⇒∗
L

w1w2 . . . wmzim ⇒L w1w2 . . . wmαm+1zim+1 ⇒∗
L . . . ,

where z → α1zi1 , zi1 → α2zi2 , . . . , zim → αm+1zim+1 , . . . ∈ P , w1, w2, . . . , wm, . . .
∈ A∗ and w = w1w2 . . . wm Let INV(π) = {z ∈ Z | z is infinitely often
rewritten in π}. Then L(G) = {w ∈ A∗ | xj ⇒∗

L w} ∪ {w ∈ Aω | π : zj ⇒ω
L

w, INV(π) ∩ {z1, . . . , zk} �= ∅}.
We now discuss the connection between mixed ω-algebraic systems over

(S〈〈A∗〉〉, S〈〈Aω〉〉), where S is B or N∞, and mixed ω-context-free grammars.
Define, for a given mixed ω-context-free grammar Gj,k = (n,A, P, j, k), 1 ≤
j ≤ n, 0 ≤ k ≤ n, the mixed ω-algebraic system xi = pi(x1, . . . , xn), zi =
qi(x1, . . . , xn, z1, . . . , zn), 1 ≤ i ≤ n, over (S〈〈A∗〉〉, S〈〈Aω〉〉) by

(pi, α) = 1 if xi → α ∈ P, (pi, α) = 0 otherwise ,
(qi, α) = 1 if zi → α ∈ P, (qi, α) = 0 otherwise .

Conversely, given a mixed ω-algebraic system xi = pi(x1, . . . , xn), zi =
qi(x1, . . . , xn, z1, . . . , zn), 1 ≤ i ≤ n, define the mixed ω-context-free grammars
Gj,k = (n,A, P, j, k), 1 ≤ j ≤ n, 0 ≤ k ≤ n, by xi → α ∈ P iff (pi, α) �= 0
and zi → α ∈ P iff (zi, α) �= 0. Whenever we speak of a mixed ω-context-free
grammar corresponding to a mixed ω-algebraic system or vice versa, then we
mean the correspondence in the sense of the above definition.

In the next theorem we use the isomorphism between B〈〈A∗〉〉 × B〈〈Aω〉〉 and
P(A∗)×P(Aω).

Theorem 3.1 Let Gj,k = (n,A, P, j, k), 1 ≤ j ≤ n, 0 ≤ k ≤ n, be a mixed
ω-context-free grammar and xi = pi(x1, . . . , xn), zi = qi(x1, . . . , xn, z1, . . . , zn),
1 ≤ i ≤ n, be the mixed ω-algebraic system over (B〈〈A∗〉〉,B〈〈Aω〉〉) corresponding
to it. Let (σ, τ) be the solution of order k, 0 ≤ k ≤ n, of xi = pi, zi = qi,
1 ≤ i ≤ n. Then L(Gj,k) = σj + τj, 1 ≤ j ≤ n, 0 ≤ i ≤ k.

Proof. By Theorem 2 of Ginsburg, Rice [8], we obtain σj = {w ∈ A∗ | xj ⇒∗
L w},

1 ≤ j ≤ n, and by Ésik, Kuich [7] we obtain τj = {w ∈ Aω | π : zj ⇒∗
L

w, INV(π) ∩ {z1, . . . , zk} �= ∅}, 1 ≤ j ≤ n, 0 ≤ k ≤ n. ��
If our basic quemiring is N∞〈〈A∗〉〉 × N∞〈〈Aω〉〉 we can draw some stronger

conclusions.

Theorem 3.2 Let Gj,k = (n,A, P, j, k), 1 ≤ j ≤ n, 0 ≤ k ≤ n, be a mixed
ω-context-free grammar and xi = pi(x1, . . . , xn), zi = qi(x1, . . . , xn, z1, . . . , zn),
1 ≤ i ≤ n be the mixed ω-algebraic system over (N∞〈〈A∗〉〉,N∞〈〈Aω〉〉) corre-
sponding to it. Let (σ, τ) be the solution of order k, 0 ≤ k ≤ n, of xi = pi,
zi = qi, 1 ≤ i ≤ n. Denote by dj(w), w ∈ A∗ (resp. w ∈ Aω) the number (possi-
bly ∞) of distinct finite leftmost derivations (resp. infinite leftmost derivations

A Semiring-Semimodule Generalization of ω-Context-Free Languages 75

π with INV(π) ∩ {z1, . . . , zk} �= ∅) from the variable xj (resp. zj), 1 ≤ j ≤ n.
Then

σj =
∑

w∈A∗
dj(w)w and τj =

∑
w∈Aω

dj(w)w , 1 ≤ j ≤ n .

Proof. By Theorem IV.1.5 of Salomaa, Soittola [11] and Ésik, Kuich [7]. ��
An ω-context-free grammar (with repeated variables) G = (Φ,A, P, S, F) is a

usual context-free grammar (Φ,A, P, S) augmented by a set F ⊆ Φ of repeated
variables. (See also Cohen, Gold [3].)

An infinite leftmost derivation π with respect to G, starting from some string
α is given by

π : α⇒L α1 ⇒L α2 ⇒L . . . ,

where α, αi ∈ (Φ∪A)∗ and⇒L is defined as usual. This infinite leftmost deriva-
tion π can be uniquely written as

α = β0B0γ0 ⇒∗
L v0B0γ0 ⇒L v0β1B1γ1γ0 ⇒∗

L

v0v1B1γ1γ0 ⇒L v0v1β2B2γ2γ1γ0 ⇒∗
L . . . ,

where vi ∈ A∗, βi, γi ∈ (Φ∪A)∗, Bi → βi+1Bi+1γi+1 ∈ P , βi ⇒∗
L vi, the specific

occurence of the variable Bi is not rewritten in the subderivation βiBiγi ⇒∗
L

viBiγi and the variables of γi are never rewritten in the infinite leftmost deriva-
tion π. This occurence of the variableBi is called the i-th significant variable of π.
(Observe that the infinite derivation tree of π has a unique infinite path determin-
ing the Bi’s.) We write also, for this infinite leftmost derivation, π : α⇒ω

L w for
w = w0w1 . . . wn By definition, INV(π) = {A ∈ Φ | A is rewritten infinitely
often in π}. The ω-language L(G) generated by the ω-context-free grammar G is
defined by

L(G) = {w ∈ A∗ | S ⇒∗
L w} ∪ {w ∈ Aω | π : S ⇒ω

L w, INV(π) ∩ F �= ∅} .

An ω-language L is called ω-context-free if it is generated by an ω-context-
free grammar. (Usually, an ω-language is a subset of Aω. In our paper, it is a
subset of A∗ ∪Aω.

The connection between an ω-algebraic system over S〈〈A∗〉〉×S〈〈Aω〉〉 and an
ω-context-free grammar is as usual. Define, for a given ω-context-free grammar
Gj = ({y1, . . . , yn}, A, P, yj , {y1, . . . , yk}) the ω-algebraic system yi = pi(y1, . . . ,
yn), 1 ≤ i ≤ n, over S〈〈A∗〉〉 × S〈〈Aω〉〉 by (pi, α) = 1 if yi → α ∈ P , (pi, α) = 0
otherwise. Conversely, given an ω-algebraic system yi = pi(y1, . . . , yn), 1 ≤ i ≤ n,
define the ω-context-free grammars Gj,k = ({y1, . . . , yn}, A, P, yj , {y1, . . . , yk}),
1 ≤ j ≤ n, 0 ≤ k ≤ n, by yi → α iff (pi, α) �= 0.

Each ω-context-free grammar G induces a mixed ω-context-free grammar
G′ as follows. Let G = (Φ,A, P, S, F), where without loss of generality, Φ =
{y1, . . . , yn}, S = yj , and F = {y1, . . . , yk}. Then G′ = (n,A, P ′, j, k), where
P ′ is defined as follows. Let yi → α = w0yi1w1 . . . wt−1yitwt ∈ P , where

76 Zoltán Ésik and Werner Kuich

yi, yi1 , . . . , yit ∈ Φ and w0, w1, . . . , wt ∈ A∗. Then we define the following set
of productions

Uyi→α = {xi → w0xi1w1 . . . wt−1xitwt} ∪
{zi → w0zi1 , zi → w0xi1w1zi2 , . . . , zi → w0xi1w1xi2 . . . wt−1zit} ,

and, moreover,
P ′ =

⋃
yi→α∈P

Uyi→α .

It is clear that, for a finite leftmost derivation yi ⇒∗
L w, w ∈ A∗ in G, there

exists a finite leftmost derivation xi ⇒∗
L w in G′ using only the x-productions.

Moreover, for each infinite leftmost derivation in G

yi ⇒L β1yi1γ1 ⇒∗
L w1yi1γ1 ⇒L w1β2yi2γ2γ1 ⇒∗

L

w1w2yi2γ2γ1 ⇒L w1w2β3yi3γ3γ2γ1 ⇒∗
L . . .

where yi is the 0-th, and yij is the j-th significant variable, there exists the
following infinite leftmost derivation in G′:

zi ⇒L β̄1zi1 ⇒∗
L w1zi1 ⇒L w1β̄2zi2 ⇒∗

L w1w2zi2 ⇒L w1w2β̄3zi3 ⇒∗
L . . . ,

where, if in βi the y’s are replaced by x’s, we get β̄i. Here zi → β̄1zi1 ∈
Uyi→β1yi1γ1 and zij → β̄j+1zij+1 ∈ Uyij

→βj+1yij+1γj+1 . Both infinite leftmost
derivations generate w1w2w3 · · · ∈ Aω .

Vice versa, to each infinite leftmost derivation zi ⇒ω
L w in G′ there exists,

in the same manner, an infinite leftmost derivation in G yi ⇒ω
L w, w ∈ Aω.

Moreover, if P ′ is the disjoint union of the Uyi→α for all yi → α ∈ P , then the
correspondence between infinite leftmost derivations inG and in G′ is one-to-one.

For an infinite leftmost derivation π in an ω-context-free grammar G, define
INSV(π) = {yi ∈ Φ | yi appears infinitely often as a significant variable in π}.
Clearly, if for all infinite leftmost derivations π of the ω-context-free grammar
G = (Φ,A, P, S, F), INV(π) ∩ F �= ∅ iff INSV(π) ∩ F �= ∅, then L(G′) = L(G),
where G′ is the mixed ω-context-free grammar induced by G.

Theorem 3.3 Let Gj,k = ({y1, . . . , yn}, A, P, yj , {y1, . . . , yk}), 1 ≤ j ≤ n,
0 ≤ k ≤ n, be an ω-context-free grammar and yi = pi(y1, . . . , yn), 1 ≤ i ≤ n, be
the ω-algebraic system over B〈〈A∗〉〉 ×B〈〈Aω〉〉 corresponding to it. Assume that,
for each infinite leftmost derivation π, INV(π) ∩ {y1, . . . , yk} �= ∅ iff INSV(π) ∩
{y1, . . . , yk} �= ∅. Let (σ, τ) be the solution of order k, 0 ≤ k ≤ n, of the ω-
algebraic system over (B〈〈A∗〉〉,B〈〈Aω〉〉) induced by yi = pi, 1 ≤ i ≤ n. Then
L(Gj,k) = σj + τj, 1 ≤ j ≤ n, 0 ≤ i ≤ k.

Theorem 3.4 Let Gj,k = ({y1, . . . , yn}, A, P, yj , {y1, . . . , yk}), 1 ≤ j ≤ n,
0 ≤ k ≤ n, be an ω-context-free grammar and yi = pi(y1, . . . , yn), 1 ≤ i ≤ n,
be the ω-algebraic system over N∞〈〈A∗〉〉 × N∞〈〈Aω〉〉 corresponding to it. As-
sume that, for each infinite leftmost derivation π, INV(π) ∩ {y1, . . . , yk} �= ∅
iff INSV(π) ∩ {y1, . . . , yk} �= ∅. Denote by dj(w), w ∈ A∗ (resp. w ∈ Aω) the

A Semiring-Semimodule Generalization of ω-Context-Free Languages 77

number (possibly ∞) of distinct finite leftmost derivations (resp. infinite leftmost
derivations π with INSV(π) ∩ {y1, . . . , yk} �= ∅) from the variable yj, 1 ≤ j ≤ n.
Then

σj =
∑

w∈A∗
dj(w)w and τj =

∑
w∈Aω

dj(w)w , 1 ≤ j ≤ n .

Observe, that if k = n or n = 1, then the assumption INV(π)∩{y1, . . . , yk} �=
∅ iff INSV(π) ∩ {y1, . . . , yk} �= ∅ for all π is satisfied.

Example 3.1 (see also Cohen, Gold [3], Example 3.1.6). Consider the ω-algebraic
system over B〈〈A∗〉〉 × B〈〈Aω〉〉 where A = {a, b}: y1 = ay1b + ab, y2 = y1y2. It
induces the mixed ω-algebraic system over (B〈〈A∗〉〉,B〈〈Aω〉〉) x1 = ax1b + ab,
x2 = x1x2, z1 = az1, z2 = z1 + x1z2. The least solution of x1 = ax1b + ab,

x2 = x1x2 is given by σ =
(∑

n≥1 a
nbn, 0

)T

. The z-equations can be written

in the form z = Mz, where M =
(
a 0
ε x1

)
. We obtain Mω1 =

(
aω

x∗1a
ω

)
and

Mω2 =
(

aω

xω
1 + x∗1a

ω

)
.

The ω-context-free grammar G corresponding to the ω-algebraic system has
productions y1 → ay1b, y1 → ab, y2 → y1y2. The infinite leftmost derivations
are

(i) y1 ⇒L ay1b ⇒L aay1bb ⇒L · · · ⇒L any1b
n ⇒L . . . , i. e., y1 ⇒ω

L aω, with
repeated variable y1;

(ii) y2 ⇒L y1y2 ⇒∗
L an1bn1y2 ⇒L an1bn1y1y2 ⇒∗

L an1bn1 . . . antbnty2 ⇒L . . . ,
i. e., y1 ⇒ω

L an1bn1 . . . antbnt . . . , with repeated variables y1, y2;

(iii) y2 ⇒∗
L an1bn1 . . . antbnty2 ⇒L an1bn1 . . . antbnty1y2 ⇒ω

L an1bn1 . . . antbntaω,
i. e., y2 ⇒ω

L an1bn1 . . . antbntaω, t ≥ 0, with repeated variable y1.

If y1 is the only repeated variable, and y1 or y2 is the start variable, then

L(G1,1) =
∑

n≥1 a
nbn +aω or L(G2,1) =

(∑
n≥1 a

nbn
)ω

∪
(∑

n≥1 a
nbn

)∗
aω, re-

spectively. If the repeated variables are y1 and y2, and y1 or y2 is the start variable
then we obtain again L(G1,2) =

∑
n≥1 a

nbn + aω or L(G2,2) =
(∑

n≥1 a
nbn

)ω

∪(∑
n≥1 a

nbn
)∗
aω, respectively. Compare this with the solutions of order 1 or

2 of the ω-algebraic system y1 = ay1b + ab, y2 = y1y2:
(∑

n≥1 a
nbn, 0

)T

+(
aω,

(∑
n≥1 a

nbn
)ω

aω
)T

or
(∑

n≥1 a
nbn, 0

)T

+
(
aω,

(∑
n≥1 a

nbn
)ω

+(∑
n≥1 a

nbn
)∗
aω

)T

, respectively. If y1 is the only repeated variable and y2

is the start variable then
(∑

n≥1 a
nbn

)ω

is missing. That is due to the fact that
in the derivations (ii) each y1 derives a finite word anjbnj by a finite leftmost
subderivation y1 ⇒∗

L anjbnj and never is a significant variable.

78 Zoltán Ésik and Werner Kuich

If all variables are repeated variables that does not matter: each infinite
leftmost derivation contributes to the generated language. Hence, if the repeated
variables are y1, y2 and the start variable is y1 or y2, the infinite parts of the
solutions of order 1 or 2 correspond to the generated languages by Theorem 3.3.

��
In the next example there is only one variable. Hence, we can apply Theo-

rems 3.3 and 3.4.

Example 3.2. Consider the ω-algebraic system y1 = ay1y1 + b over N∞〈〈A∗〉〉 ×
N∞〈〈Aω〉〉, where A = {a, b}. The least solution of the algebraic system x1 =
ax1x1 +b over N

∞〈〈A∗〉〉 is given by σ = D∗b, where D is the characteristic series
of the restricted Dyck language (see Berstel [1]). The mixed ω-algebraic system
over (N∞〈〈A∗〉〉,N∞〈〈Aω〉〉) x1 = ax1x1 + b, z1 = az1 + ax1z1 has the solution of
order 1 (D∗b, (a + ax1)ω(D∗b)) = (D∗b, (a + aD∗b)ω) = (D∗b, (a + D)ω), since
aD∗b = D.

The ω-context-free grammar corresponding to y1 = ay1y1+b has productions
y1 → ay1y1, y1 → b and generates the languageD∗b+(a+D)ω = D∗b+(a∗D)ω+
(a∗D)∗aω.

Since each word in (a∗D)∗ and in (a∗D)ω has a unique factorization into
words of a∗D, all coefficients of D∗b+(a+D)ω are 0 or 1, i. e., the ω-context-free
grammar with productions y1 → ay1y1, y1 → b is an “unambiguous” ω-context-
free grammar. ��

Let (S, V) be a continuous starsemiring-omegasemimodule pair and inspect
the solutions of order k: If (σ, ω) is a solution of order k of an S′-algebraic system
over S × V then σ ∈ Alg(S′) and ω is the k-th automata theoretic solution of a
finite Alg(S′)-linear system. Hence, by Theorems 3.9, 3.10, 3.2 of Ésik, Kuich [6]
and by Theorem 4.4 of Ésik, Kuich [7], ω is of the form ω =

∑
1≤j≤m sjt

ω
j with

sj , tj ∈ Rat(Alg(S′)) = Alg(S′). Hence, again by Theorem 3.9 of Ésik, Kuich [6]
and by Theorem 3.10 of Ésik, Kuich [7] we obtain the following result.

Theorem 3.5 Let (S, V) be a continuous starsemiring-omegasemimodule
pair. Then the following statements are equivalent for (s, v) ∈ S × V :

(i) (s, v) = ||A||, where A is a finite Alg(S′)-automaton,
(ii) (s, v) = ||A||1, where A is a finite Alg(S′)-automaton,
(iii) (s, v) ∈ ω-Alg(S′),
(iv) s ∈ Alg(S′) and v =

∑
1≤k≤m skt

ω
k , where sk, tk ∈ Alg(S′).

Theorem 3.6 Let (S, V) be a continuous starsemiring-omegasemimodule
pair. Then ω-Alg(S′) is an ω-rationally closed quemiring.

Proof. Since, by assumption, 0, 1 ∈ S′ we infer that 0, 1 ∈ ω-Alg(S′). Assume
now that (σ1, ω1) and (σ2, ω2) are in ω-Alg(S′). Then, by Theorem 3.5, σ1, σ2 ∈
Alg(S′) and ω1 =

∑
1≤k≤m1

s1kt
1
k

ω , ω2 =
∑

1≤k≤m2
s2kt

2
k

ω for some s1k, s
2
k, t

1
k, t

2
k ∈

Alg(S′). We obtain

(σ1, ω1) + (σ2, ω2) = (σ1 + σ2,
∑

1≤k≤m1

s1kt
1
k

ω
+

∑
1≤k≤m2

s2kt
2
k

ω
)

A Semiring-Semimodule Generalization of ω-Context-Free Languages 79

and
(σ1, ω1) · (σ2, ω2) = (σ1σ2,

∑
1≤k≤m1

s1kt
1
k

ω
+ σ1 ·

∑
1≤k≤m2

s2kt
2
k

ω
) .

Hence, (σ1, ω1) + (σ2, ω2) and (σ1, ω1) · (σ2, ω2) are again in ω-Alg(S′).
Moreover, we obtain

(σ1, ω1)¶ = (σ1, 0)

and
(σ1, ω1)⊗ = (σ∗

1 , σ
ω
1 + σ∗

1 ·
∑

1≤k≤m1

s1kt
1
k

ω
) .

Hence, (σ1, ω1)¶ and (σ1, ω1)⊗ are again in ω-Alg(S′) and ω-Alg(S′) is rationally
closed. ��

Notation 3.1.5, Definition 2.2.1 and Theorem 4.1.8(a) of Cohen, Gold [3] and
Theorem 3.5(iv) yield the next result.

Theorem 3.7 CFLω = {L0 ⊆ Aω | L0 ∈ Bω-alg〈〈A∗, Aω〉〉, A an alphabet}.
Let t ∈ Balg〈〈A∗〉〉. Then t is the x2-component of the least solution of an

algebraic system xi = pi(x2, . . . , xn), 2 ≤ i ≤ n, over B
alg〈〈A∗〉〉. Consider the

ω-algebraic system over B〈〈A∗〉〉 × B〈〈Aω〉〉:
y1 = y2y1 , yi = pi(y2, . . . , yn), 2 ≤ i ≤ n ,

and consider the induced mixed ω-algebraic system over (B〈〈A∗〉〉,B〈〈Aω〉〉):
z1 = z2 + x2z1 , zi = (pi)x(x1, . . . , xn, z1, . . . , zn), 2 ≤ i ≤ n ,
x1 = x2x1 , xi = pi(x2, . . . , xn), 2 ≤ i ≤ n .

The first component of the least solution of x1 = x2x1, xi = pi(x2, . . . , xn),
2 ≤ i ≤ n, is 0. We now compute the solution of order 1 of z1 = z2 + x2z1,
zi = (pi)x(x1, . . . , xn, z1, . . . , zn), 2 ≤ i ≤ n. We write the system in the form
z = Mz and obtain

M =

⎛⎜⎜⎜⎝
x2 ε 0 . . . 0
0
...
0

M ′

⎞⎟⎟⎟⎠ .

Hence, the first component of Mω1 is xω
2 and the first component of the solution

of order 1 is given by (0, tω).
Consider now the ω-context-free grammar G corresponding to y1 = y2y1,

yi = pi, 2 ≤ i ≤ n, with the set of repeated variables {y1} and start variable y1.
The only infinite leftmost derivations π, where y1 appears infinitely often, are of
the form

π : y1 ⇒L y2y1 ⇒∗
L w1y1 ⇒L w1y2y1 ⇒∗

L w1w2y1 ⇒L

The only significant variable of such a derivation π is y1, i. e., INSV(π) = {y1},
and INSV(π) ∩ {y1} �= ∅ iff INV(π) ∩ {y1} �= ∅. Hence, L(G1,1) = tω by Theo-
rem 3.3.

80 Zoltán Ésik and Werner Kuich

The usual constructions yield then, for s + v, where v =
∑

1≤k≤n skt
ω
k ,

s, sk, tk ∈ Balg〈〈A∗〉〉, an ω-context-free grammar G′ such that L(G′) = s+ v.
Hence, we have given a construction proving again Theorem 3.7. But addi-

tionally, G′ has the nice property that for each infinite leftmost derivation π,
we obtain INSV(π) ∩ F �= ∅ iff INV(π) ∩ F �= ∅, where F is the set of repeated
variables of G′.

References

1. Berstel, J.: Transductions and Context-Free Languages. Teubner, 1979.
2. Bloom, S. L., Ésik, Z.: Iteration Theories. EATCS Monographs on Theoretical

Computer Science. Springer, 1993.
3. Cohen, R. S., Gold, A. Y.: Theory of ω-languages I: Characterizations of ω-context-

free languages. JCSS 15(1977) 169–184.
4. Elgot, C.: Matricial theories. J. Algebra 42(1976) 391–422.
5. Ésik, Z., Kuich, W.: On iteration semiring-semimodule pairs. To appear.
6. Ésik, Z., Kuich, W.: A semiring-semimodule generalization of ω-regular languages I.

Technical Report, Technische Universität Wien, 2003.
7. Ésik, Z., Kuich, W.: A semiring-semimodule generalization of ω-regular lan-

guages II. Technical Report, Technische Universität Wien, 2003.
8. Ginsburg, S., Rice, H. G.: Two families of languages related to ALGOL. J. Assoc.

Comput. Mach. 9(1962) 350–371.
9. Kuich, W.: Semirings and formal power series: Their relevance to formal languages

and automata theory. In: Handbook of Formal Languages (Eds.: G. Rozenberg and
A. Salomaa), Springer, 1997, Vol. 1, Chapter 9, 609–677.

10. Lausch, H., Nöbauer, W.: Algebra of Polynomials. North-Holland, 1973.
11. Salomaa, A., Soittola, M.: Automata-Theoretic Aspects of Formal Power Series.

Springer, 1978.

Integer Weighted Finite Automata, Matrices,

and Formal Power Series over Laurent
Polynomials

Vesa Halava

Department of Mathematics and TUCS - Turku Centre for Computer Science,
University of Turku, FIN-20014, Turku, Finland

vehalava@utu.fi

Abstract. It is well known that the family of regular languages (over
alphabet A), accepted by finite automata, coincides with the set of sup-
ports of the rational and recognizable formal power series over N with the
set of variables A. Here we prove that there is a corresponding presenta-
tion for languages accepted by integer weighted finite automata, where
the weights are from the additive group of integers, via the matrices over
Laurent polynomials with integer coefficients.

1 Introduction

It is well known that the family of languages accepted by a finite automata (over
alphabet A), can be defined also with the set of recognizable formal power series
over N, which on the other hand is equal with the set of rational formal power
series over N, where A is considered as a noncommutative set of variables. This
connection is proved by using the matrix representation of the finite automata.

Here we give a similar representation for the family of languages accepted
with the integer weighted finite automata, see [4, 5]. In these automata the
weights are from the additive group of integers and a word is accepted, if it
has a successful path in the underlying automaton and the weight of the path
adds up to zero. We show that there is a connection between these languages
and the recognizable and rational formal power series with coefficients from the
ring of the Laurent polynomials with integer coefficients. The proof uses the
representation of the integer weighted finite automata with matrices over the
Laurent polynomials. The difference between these two constructions is in the
definition of the language defined with the series.

Next we give the basic definitions on words and languages. Let A be a finite
set of symbols, called an alphabet. A word over A is a finite sequence of symbols
in A. We denote by A∗ the set of all words over A. Note that also the empty
word, denoted by ε, is in A∗.

Let u = u1 . . . un and v = v1 . . . vm be two words in A∗, where each ui and
vj are in A for 1 ≤ i ≤ n and 1 ≤ j ≤ m. The concatenation of u and v
is the word u · v = uv = u1 . . . unv1 . . . vm. The operation of concatenation is
associative on A∗, and thus A∗ is a semigroup (containing an identity element

J. Karhumäki et al. (Eds.): Theory Is Forever (Salomaa Festschrift), LNCS 3113, pp. 81–88, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

82 Vesa Halava

ε). Let A+ = A∗ \ {ε} be the semigroup of all nonempty words over A. A subset
L of A∗ is called a language.

2 Formal Power Series

Here we give the needed definitions and notations on formal power series. As a
general reference and for the details, we give [2, 9, 11] .

Let K be a semiring and A an alphabet. A formal power series S is a function

A∗ → K.

Note that here A is considered as a (noncommutative) set of variables. The image
of a word w under S is denoted by (S,w) and it is called the coefficient of w in
S. The support of S is the language

supp(S) = {w ∈ A∗ | (S,w) �= 0}.

The set of formal series over A with coefficients in K is denoted by K〈〈A〉〉. A
formal series with a finite support is called a polynomial. The set of polynomials
is denoted by K〈A〉.

Let S and T be two formal series in K〈〈A〉〉. Then their sum is given by

(S + T,w) = (S,w) + (T,w)

and their product by

(ST,w) =
∑

uv=w

(S, u)(T, v).

We also define two external operations of K in K〈〈A〉〉. Assume that a is in
K and S in K〈〈A〉〉, then the series aS and Sa are defined by

(aS,w) = a(S,w) and (Sa,w) = (S,w)a.

A formal series S can also be written in the sum form S =
∑
aww over all

w ∈ A∗ such that aw is the coefficient of w in K, i.e. (S,w) = aw.
A formal series S in K〈〈A〉〉 is called proper if the coefficient of the empty

word vanishes, that is (S, ε) = 0. Let S be proper formal series. Then the family
(Sn)n≥0 is locally finite (see [2]), and we can define the sum of this family,
denoted by

S∗ =
∑
n≥0

Sn

and it is called the star of S. Note that S0 = 1, S1 = S and Sn = SSn−1 , where
1 is the identity of K under product.

The rational operations in K〈〈A〉〉 are the sum, the product and the star. A
formal series is called rational if it is an element of the rational closure of K〈A〉,

Integer Weighted Finite Automata, Matrices, and Formal Power Series 83

i.e. it can be defined using the polynomials K〈A〉 and the rational operations.
The family of rational series is denoted by Krat〈〈A〉〉.

As usual, we denote by Km×n the set of the m× n matrices over K.
A formal series S ∈ K〈〈A〉〉 is called recognizable if there exists an integer

n ≥ 1, and a monoid morphism μ : A∗ → Kn×n, into the multiplicative structure
of Kn×n, and two vectors ı, ρ ∈ Kn such that for all words w,

(S,w) = ıμ(w)ρT .

The triple (ı, μ, ρ) is called a linear representation of S with dimension n. The
set of recognizable series over K is denoted by Krec〈〈A〉〉

The next theorem is fundamental in the theory of rational series. It was first
proved by Kleene in 1956 for languages that are those series with coefficients
in the Boolean semiring. It was later extented by Schützenberger to arbitrary
semirings. For details, see [2, 9, 11].

Theorem 1. A formal series is recognizable if and only if it is rational.

3 Finite Automaton

A (nondeterministic) finite automaton is a quintuple A = (Q,A, δ, qA, F), where
Q is a finite set of states, A is a finite input alphabet, δ : Q × A → 2Q is a
transition function, qA ∈ Q is an initial state and F is the set of final states. A
transition p ∈ δ(q, a), where p, q ∈ Q and a ∈ A, will also be written as (q, a, p),
in which case δ ⊆ Q × A × Q is regarded as a relation (and sometimes also as
an alphabet). Without loss of generality, we can assume that

Q = {1, 2, . . . , n} for some n ≥ 1, and qA = 1 .

Indeed, renaming of the states will not change the accepted language.
A path π of A (from q1 to qn+1) is a sequence

π = t1t2 . . . tk where ti = (qi, ai, qi+1) ∈ δ (1)

for i = 1, 2, . . . , k. If we consider δ as an alphabet, then we can write π ∈ δ∗.
The label of the path π in (1) is the word ‖π‖ = a1a2 . . . ak. Let

A(w : p→ q) = {π | π a path from p to q with ‖π‖ = w} .
Moreover, a path π ∈ A(w : p → q) is successful (for w), if p = 1 and q ∈ F .
The language accepted by A is the subset L(A) ⊆ A∗ consisting of the labels of
the successful paths of A:

L(A) = {w ∈ A∗ | π ∈ A(w : 1→ q) for some q ∈ F} .
It is well-known that each finite automata has a matrix representation ob-

tained as in the following. Let A = (Q,A, δ, 1, F) be a finite automaton with n
states, i.e., Q = {1, 2, . . . , n}. Define for all a ∈ A, the matrix Ma ∈ Nn×n by

(Ma)ij =

{
1, if j ∈ δ(i, a),
0, otherwise.

(2)

84 Vesa Halava

We define a monoid morphism μ : A∗ → Nn×n by setting μ(a) = Ma, where the
operation in Nn×n is the usual matrix multiplication.

Let ı = (1, 0, . . . , 0), where only the first term is nonzero, and let ρ =
(ρ1, ρ2, . . . , ρn) in Nn where

ρi =

{
1, if qi ∈ F,
0, otherwise.

(3)

The triple (ı, μ, ρ) is then called the linear representation of A.
For the proof for the following theorem, see [2, 9, 11].

Theorem 2. A language L is accepted by a finite automaton if and only if there
exists a linear representation (ı, μ, ρ) such that

w ∈ L ⇐⇒ ıμ(w)ρT �= 0.

Note that we could have defined the matrices over the boolean semiring B

instead of the semiring N, and then replacing ıμ(w)ρT �= 0 by ıμ(w)ρT = 1. But
using the ring N, we achieve the following advantage.

Theorem 3. For a finite automaton A having a linear representation (ı, μ, ρ),
the value ıμ(w)ρT equals the number of different successful paths in A for w.

By Theorem 2 and the fundamental theorem, Theorem 1, we get the following
corollary.

Corollary 1. L ⊆ A∗ is a regular language if and only if there exists a formal
series SL ∈ Nrat〈〈A〉〉 = Nrec〈〈A〉〉 such that L = supp(SL).

Note that it follows that the regular languages are closed under the rational
operations, since Nrat〈〈A〉〉 is.

4 Laurent Polynomials and Weighted Automata

In this section we give a corresponding representation for the languages accepted
by the integer weighted finite automata. We begin with some definitions.

A Laurent polynomial p ∈ Z[x, x−1] with coefficients in Z is a series

p(x) = . . . a−2x
−2 + a−1x

−1 + a0 + a1x+ a2x
2 + . . . ,

where there are only finitely many nonzero coefficients ai ∈ Z. The constant
term of the Laurent polynomial p ∈ Z[x, x−1] is a0. The family of Laurent
polynomials with coefficients in Z forms a ring with respect to the operations
of sum and multiplication, that are defined in the usual way. Indeed, the sum
is defined componentwise and the multiplication is the Cauchy product of the
polynomials: (∞∑

i=−∞
aix

i

)(∞∑
i=−∞

bix
i

)
=

∞∑
i=−∞

(
∑

j+k=i

ajbk)xi.

Integer Weighted Finite Automata, Matrices, and Formal Power Series 85

Note that in the definition of Laurent polynomials we could have used also
arbitrary ring instead of Z, but here we need only the integer case. Actually, we
concentrate on matrices over Laurent polynomials with integer coefficients, that
is, the elements of Z[x, x−1]n×n for n ≥ 1. A Laurent polynomial matrix

M = (cij)n×n ∈ Z[x, x−1]n×n

is a n × n-square matrix the entries of which are Laurent polynomials from
Z[x, x−1]. For these matrices, multiplication is defined in the usual way using the
multiplication of the ring Z[x, x−1]. Indeed, ifM1 = (cij)n×n andM2 = (dij)n×n,
then

M1 ·M2 = (eij)n×n,

where

eij =
n∑

k=1

cikdkj ∈ Z[x, x−1].

Also the sum for these matrices can be defined, but we are interested in the
semigroups generated by a finite number of Laurent polynomials under multi-
plication.

Next we consider a generalization of finite automata where the transitions
have integer weights. The type of automata we consider is closely related to the
1-turn counter automata as considered by Baker and Book [1], Greibach [3],
and especially by Ibarra [8]. Also, regular valence grammars are related to these
automata, see [7]. Moreover, the extended finite automata of Mitrana and Stiebe
[10] are generalizations of these automata.

Consider the additive group of Z of integers. A (Z-)weighted finite automaton
Aγ consists of a finite automaton A = (Q,A, δ, 1, F) as above, except that here
δ may be a finite multiset of transitions in Q × A × Q, and a weight function
γ : δ → Z. We let δ be a multiset in order to be able to define (finitely) many
different weights for each transition of A. For example, it is possible that for
t1, t2 ∈ δ, t1 = (i, a, j) = t2 and γ(t1) �= γ(t2).

Let π = t1t2 . . . tk be a path of A, where ti = (qi, ai, qi+1) for i = 1, 2, . . . , k.
The weight of π is the element

γ(π) = γ(t1) + γ(t2) + · · ·+ γ(tk).

Furthermore, we let

L(Aγ) = {w ∈ A∗ | γ(π) = 0, π ∈ A(w : 1→ q) for some q ∈ F} ,
be the language of Aγ . In other words, a word is accepted by Aγ if and only if
there is a successful path of weight 0 in Aγ .

Next we shall introduce a matrix representation of integer weighted finite
automata with the matrices over the Laurent polynomials Z[x, x−1].

Let Aγ be a weighted finite automaton, where A = (Q,A, δ, 1, F) and γ : δ →
Z. Let again Q = {1, 2, . . . , n}. Define for each element a ∈ A and a pair of states
i, j ∈ Q the Laurent polynomial

86 Vesa Halava

pa
ij =

∑
t=(i,a,j)∈δ

xγ(t) .

Moreover, define the Laurent polynomial matrixMa ∈ Z[x, x−1]n×n for all a ∈ A
by

(Ma)ij = pa
ij . (4)

Let μ : A∗ → Z[x, x−1]n×n be the morphism defined by μ(a) = Ma. Let ı and ρ
be the vectors as in (3). The triple (ı, μ, ρ) is called a Laurent representation of
Aγ . For completeness sake, we give here the proof of the following result of [6].

Lemma 1. Let (ı, μ, ρ) be a Laurent representation of Aγ, and let w ∈ A∗. Then
the coefficient of xz in μ(w)ij is equal to the number of paths π ∈ A(w : i → j)
of weight z.

Proof. We write Mu = μ(w) for each word w. We prove the claim by induction
on the length of the words. The claim is trivial, if w ∈ A. Assume then that
the claim holds for the words u, v ∈ A+, and let (Mu)ij = pu

ij =
∑

z α
z
ijx

z ,
where αz

rs is the number of paths from A(u : i → j) of weight z. Similarly, let
(Mv)ij = pv

ij =
∑

z β
z
ijx

z , where βz
rs is the number of paths from A(v : i → j)

of weight z. Now,

(MuMv)ij =
n∑

k=1

pu
ikp

v
kj =

n∑
k=1

(∑
z1

αz1
ikx

z1
∑
z2

βz2
kjx

z2

)
=

n∑
k=1

∑
z1,z2

αz1
ikβ

z2
kjx

z1+z2 =
∑
z1,z2

n∑
k=1

αz1
ikβ

z2
kjx

z1+z2 .

In other words, the coefficient of xz is equal to
∑

z1+z2=z

∑n
k=1 α

z1
ikβ

z2
kj , where-

from the claim easily follows.

The following result is an immediate corollary to Lemma 1.

Theorem 4. Let (ı, μ, ρ) be a Laurent representation of Aγ , and let w ∈ A∗

Then the constant term c of ıμ(w)ρT equals the number of different successful
paths of w in Aγ . In particular, w ∈ L(Aγ) if and only if c > 0.

Since Z[x, x−1] is a ring we can also study the formal power series
Z[x, x−1]〈〈A〉〉. Note that the zero element of Z[x, x−1] is the zero polynomial,
where all the coefficients are 0. By Theorem 1, we get the following corollary.

Corollary 2. A language L ⊆ A∗ accepted with Aγ if and only if there exists a
formal power series SL ∈ Z[x, x−1]rat〈〈A〉〉 = Z[x, x−1]rec〈〈A〉〉 such that

w ∈ L ⇐⇒ (SL, w) =
n∑

i=m

aix
i and a0 �= 0.

Integer Weighted Finite Automata, Matrices, and Formal Power Series 87

Note that the this corollary does not give any closure properties on the fam-
ily of languages accepted with integer weighted finite automata. The closure
properties of these languages were studied in [4]. For example, the family is not
closed under star.

Note also that the undecidability result in [5] gives undecidability result for
matrices over Laurent polynomials, see [6].

Actually, for the power series SL ∈ Z[x, x−1]〈〈A〉〉 in Corollary 2, supp(SL) =
L(A), i.e., the support of SL is the regular language accepted by the underlying
automaton of Aγ . By reordering the terms according to powers of the variable
x, we get

SL =
n∑

z=m

Lzx
z, (5)

where Lz is the sum of words of the language

{w ∈ A∗ | π ∈ A(w : 1→ q) for some q ∈ F, γ(π) = z} ⊆ A∗,

with multiplicities from Z. We denote these languages simply by Lz. Now L0 =
L(Aγ) = L and L(A) = ∪z∈ZLz. Note that this union can be infinite, since the
sum (5) can be infinite, even for both directions. It follows also by the rationality
of SL that the languages Lz are in the family of languages accepted with integer
weighted finite automata, since x−zSL ∈ Z[x, x−1]rat〈〈A〉〉.

Acknowledgements

I want to thank Dr. Tero Harju for the several comments and suggestion for this
work during our coffee breaks.

References

1. B. Baker and R. Book, Reversal-bounded multipushdown machines, J. Comput.
System Sci. 8 (1974), 315–332.

2. J. Berstel and C. Reutenauer, Rational series and their languages, Springer-Verlag,
1988.

3. S. A. Greibach, An infinite hierarchy of context-free languages, J. Assoc. Comput.
Mach. 16 (1969), 91–106.

4. V. Halava and T. Harju, Languages accepted by integer weighted finite automata,
Jewels are forever, Springer, Berlin, 1999, pp. 123–134.

5. V. Halava and T. Harju, Undecidability in integer weighted finite automata, Fund.
Inform. 38 (1999), no. 1-2, 189–200.

6. V. Halava and T. Harju, Undecidability in matrices over Laurent polynomials, Tech.
Report 600, Turku Centre for Computer Science, March 2004, submitted.

7. V. Halava, T. Harju, H. J. Hoogeboom, and M. Latteux, Valence languages gen-
erated by generalized equality sets, Tech. Report 502, TUCS, 2002, to appear in
JALC.

8. O. H. Ibarra, Restricted one-counter machines with undecidable universe problems,
Math. Systems Theory 13 (1979), 181–186.

88 Vesa Halava

9. W. Kuich and A. Salomaa, Semirings, automata, languages, Springer-Verlag, 1986.
10. V. Mitrana and R. Stiebe, The accepting power of finite automata over groups,

New Trends in Formal Language (G. Păun and A. Salomaa, eds.), Lecture Notes
in Comput. Sci., vol. 1218, Springer-Verlag, 1997, pp. 39–48.

11. A. Salomaa and M. Soittola, Automata–theoretic aspects of formal power series,
Springer–Verlag, 1978.

Two Models for Gene Assembly in Ciliates

Tero Harju1,3, Ion Petre2,3, and Grzegorz Rozenberg4

1 Department of Mathematics, University of Turku
Turku 20014 Finland

harju@utu.fi
2 Department of Computer Science, Åbo Akademi University

Turku 20520 Finland
ipetre@abo.fi

3 Turku Centre for Computer Science
Turku 20520 Finland

4 Leiden Institute for Advanced Computer Science, Leiden University
Niels Bohrweg 1, 2333 CA Leiden, the Netherlands, and

Department of Computer Science, University of Colorado at Boulder
Boulder, Co 80309-0347, USA

rozenber@liacs.nl

Abstract. Two models for gene assembly in ciliates have been proposed
and investigated in the last few years. The DNA manipulations postu-
lated in the two models are very different: one model is intramolecular
– a single DNA molecule is involved here, folding on itself according to
various patterns, while the other is intermolecular – two DNA molecules
may be involved here, hybridizing with each other. Consequently, the
assembly strategies predicted by the two models are completely differ-
ent. Interestingly however, the final result of the assembly (including the
assembled gene) is always the same. We compare in this paper the two
models for gene assembly, formalizing both in terms of pointer reductions.
We also discuss invariants and universality results for both models.

1 Introduction

Ciliates are unicellular eukaryotic organisms, see, e.g. [23]. This is an ancient
group of organisms, estimated to have originated around two billion years ago.
It is also a very diverse group – some 8000 species are currently known and
many others are likely to exist. Their diversity can be appreciated by comparing
their genomic sequences: some ciliate types differ genetically more than humans
differ from fruit flies! Two characteristics unify ciliates as a single group: the
possession of hairlike cilia used for motility and food capture, and the presence
of two kinds of functionally different nuclei in the same cell, a micronucleus and
a macronucleus, see [15], [24], [25]; the latter feature is unique to ciliates. The
macronucleus is the “household” nucleus – all RNA transcripts are produced
in the macronucleus. The micronucleus is a germline nucleus and has no known
function in the growth or in the division of the cell. The micronucleus is activated
only in the process of sexual reproduction, where at some stage the micronuclear

J. Karhumäki et al. (Eds.): Theory Is Forever (Salomaa Festschrift), LNCS 3113, pp. 89–101, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

90 Tero Harju, Ion Petre, and Grzegorz Rozenberg

genome gets transformed into the macronuclear genome, while the old macronu-
clear genome is destroyed. This process is called gene assembly, it is the most
involved DNA processing known in living organisms, and it is most spectacular
in the Stichotrichs species of ciliates (which we consider in this paper). What
makes this process so complex is the unusual rearrangements that ciliates have
engineered in the structure of their micronuclear genome. While genes in the
macronucleus are contiguous sequences of DNA placed (mostly) on their own
molecules (and some of them are the shortest DNA molecules known in Na-
ture), the genes in the micronucleus are placed on long chromosomes and they
are broken into pieces called MDSs, separated by noncoding blocks called IESs,
see [15, 21–26]. Adding to the complexity, the order of the MDSs is permuted
and MDSs may be inverted. One of the amazing features of this process is that
ciliates appear to use “linked lists” in gene assembly, see [29, 30], similarly as in
software engineering!

Two different models have been proposed for gene assembly. The first one,
proposed by Landweber and Kari, see [19, 20], is intermolecular: the DNA ma-
nipulations here may involve two molecules exchanging parts of their sequences
through recombination. The other one, proposed by Ehrenfeucht, Prescott, and
Rozenberg, see [11, 27], is intramolecular: here, all manipulations involve one sin-
gle DNA molecule folding on itself and swapping parts of its sequence through
recombination. In the intermolecular model one traditionally attempts to cap-
ture both the process of identifying pointers and the process of using pointers
by operations that accomplish gene assembly. In the intramolecular model one
assumes that the pointer structure of a molecule is known, i.e., the pointers have
been already identified. This implies some important differences between the
models: e.g., the intramolecular representations of genes contain only pointers,
with two occurrences for each pointer, and moreover, processing a pointer im-
plies its removal from the processed string; these properties do not hold in the
intermolecular model. Finally, the bulk of the work on the intermolecular model
[1–3, 16–18] is concerned with the computational power of the operations in the
sense of computability theory; e.g., it is proved in [18–20] that the model has the
computational power of the Turing machine. On the other hand, research on the
intramolecular model, see [4–6, 8–10, 12–14] and especially [7], deals with repre-
sentations and properties of the gene assembly process (represented by various
kinds of reduction systems). We believe that the two approaches together shed
light on the computational nature of gene assembly in ciliates.

In this paper, we take a novel approach on the intermolecular model aim-
ing to compare the assembly strategies predicted by each model. Therefore, we
formalize both models in terms of MDS-IES descriptors and describe the gene
assembly in terms of pointer reductions. We prove a universality result showing
that the assembly power of the two models is the same: any gene that can be
assembled in one model can also be assembled in the other. Nevertheless, the
assembly strategies and the gene patterns throughout the process are completely
different in the two models. Somewhat surprisingly, we show that the two models
agree on the final results of the assembly process.

Two Models for Gene Assembly in Ciliates 91

2 The Structure of Micronuclear Genes

We shall now take a formal approach to gene assembly. The central role in this
process is played by pointers. These are short sequences at the ends of MDSs
(i.e., at the border of an MDS and an IES) – the pointer in the end of an MDS
M coincides as a nucleotide sequence with the pointer in the beginning of the
MDS following M in the macronuclear gene, see [22, 25]. For the purpose of an
adequate formal representation, the first (last, resp.) MDS begins (ends, resp.)
with a specific marker b (e, resp.). It is enough for our purposes to describe any
MDS by the pair of pointers or markers flanking it at its ends. The gene will then
be described as a sequence of such pairs interspersed with strings describing the
sequence of IES – we thus obtain MDS-IES descriptors formally defined in the
following. For more details we refer to [7].

For an alphabet Σ and a string u over Σ, we will denote by [u] the circular
version of string u – we refer to [7] for a formal definition. Let Σ = {a | a ∈ Σ}
and u = a1a2 . . . an, ai ∈ Σ ∪ Σ. The inverse of u is the string u = an . . . a2a1,
where a = a, for all a ∈ Σ. The empty string will be denoted by Λ.

Let M = { b, e, b, e } denote the set of the markers and their inverses. For
each index κ ≥ 2, let

Δκ = { 2, 3, . . . , κ } and Πκ = Δκ ∪Δκ.

An element p ∈ Πκ is called a pointer. Also let

Γκ = { (b, e), } ∪ { (b, i), (i, e) | 2 ≤ i ≤ κ } ∪ { (i, j) | 2 ≤ i < j ≤ κ }
and Γ κ = {(β, α) | (α, β) ∈ Γκ}. A string δ over Γκ ∪ Γ κ is called an MDS
descriptor if

(a) δ has exactly one occurrence from the set {b, b} and exactly one occurrence
from the set {e, e};

(b) δ has either zero, or two occurrences from {p, p}, for any pointer p ∈ Πκ.

Let Ωκ = {I1, I2, . . . , Iκ−1} andΩκ = {I | I ∈ Ωκ}. Any string ι overΩκ∪Ωκ

is called an IES-descriptor if for any I ∈ Ωκ, ι contains at most one occurrence
from {I, I}.

A string γ over Γκ ∪ Γκ ∪Ωκ ∪Ωκ is called an MDS-IES descriptor if

γ = ι1(p1, q1)ι2(p2, q2) . . . ιn(pn, qn)ιn+1,

where ι1ι2 . . . ιn+1 is an IES-descriptor, and (p1, q1) . . . (pn, qn) is an MDS-descrip-
tor. We say that γ is assembled if γ = ι1(m,m′)ι2 for some IES-descriptors ι1, ι2
and m,m′ ∈ M. If (m,m′) = (b, e), then we say that γ is assembled in the
orthodox order and if (m,m′) = (e, b), then we say that γ is assembled in the
inverted order.

A circular string [γ] is an (assembled) MDS-IES descriptor if γ is so.

Example 1. The MDS-IES descriptor associated to the micronuclear actin I gene
in S.nova, shown in Fig. 1, is M3I1M4I2M6I3M5I4M7I5M9I6M2I7M1I8M8. ��

92 Tero Harju, Ion Petre, and Grzegorz Rozenberg

8127 93 4 6 5

Fig. 1. Structure of the micronuclear gene encoding actin protein in the stichotrich
Sterkiella nova. The nine MDSs are in a scrambled disorder

3 Two Models for Gene Assembly

We briefly present in this section the intramolecular and the intermolecular mod-
els for gene assembly in ciliates. We then formalize both models in terms of
pointer reductions and MDS-IES descriptors. For more details we refer to [7, 11,
19, 20, 27].

3.1 The Intramolecular Model

Three intramolecular operations were postulated in [11] and [27] for gene as-
sembly: ld, hi, and dlad. In each of these operations, a linear DNA molecule
containing a specific pattern is folded on itself in such a way that recombination
can take place. Operations hi and dlad yield as a result a linear DNA molecule,
while ld yields one linear and one circular DNA molecule, see Figs. 2-4. The
specific patterns required by each operation are described below:

(a) (b) (c) (d)

Fig. 2. Illustration of the ld molecular operation

(a) (b) (c) (d)

Fig. 3. Illustration of the hi molecular operation

Two Models for Gene Assembly in Ciliates 93

(a) (b) (c)

Fig. 4. Illustration of the dlad molecular operation

(i) The ld operation is applicable to molecules in which two occurrences (on the
same strand) of the same pointer p flank one IES. The molecule is folded
so that the two occurrences of p are aligned to guide the recombination, see
Fig. 2. As a result, one circular molecule is excised.

(ii) The hi operation is applicable to molecules in which a pointer p has two
occurrences, of which exactly one is inverted. The folding is done as in Fig. 3
so that the two occurrences of p are aligned to guide the recombination.

(iii) The dlad operation is applicable to molecules in which two pointers p and
q have interspersed occurrences (on the same strand): p − q − p − q. The
folding is done as in Fig. 4 so that the two occurrences of p and q are aligned
to guide the double recombination.

Operations ld, hi, and dlad can be formalized in terms of reduction rules ld,
hi, and dlad for MDS-IES descriptors as follows:

(1) For each p ∈ Πκ, the ld-rule for p is defined by:

ldp(δ1(q, p)ι1(p, r)δ2) = δ1(q, r)δ2 + [ι1] ,

ldp(ι1(p,m)ι2(m′, p)ι3) = ι1ι3 + [(m′,m)ι2] ,

where q, r ∈ Πκ ∪M, δ1, δ2 are MDS-IES descriptors, ι1, ι2, ι3 are IES de-
scriptors, and m,m′ ∈M.

(2) For each p ∈ Πκ, the hi-rule for p is defined by:

hip(δ1(p, q)δ2(p, r)δ3) = δ1δ2(q, r)δ3 ,
hip(δ1(q, p)δ2(r, p)δ3) = δ1(q, r)δ2δ3 ,

where q, r ∈ Πκ and δ1, δ2 ∈ (Γκ ∪Ω)�.
(3) For each p, q ∈ Πκ, p �= q, the dlad rule for p and q is defined by:

dladp,q(δ1(p, r1)δ2(q, r2)δ3(r3, p)δ4(r4, q)δ5) = δ1δ4(r4, r2)δ3(r3, r1)δ2δ5 ,
dladp,q(δ1(p, r1)δ2(r2, q)δ3(r3, p)δ4(q, r4)δ5) = δ1δ4δ3(r3, r1)δ2(r2, r4)δ5 ,
dladp,q(δ1(r1, p)δ2(q, r2)δ3(p, r3)δ4(r4, q)δ5) = δ1(r1, r3)δ4(r4, r2)δ3δ2δ5 ,
dladp,q(δ1(r1, p)δ2(r2, q)δ3(p, r3)δ4(q, r4)δ5) = δ1(r1, r3)δ4δ3δ2(r2, r4)δ5 ,
dladp,q(δ1(p, r1)δ2(q, p)δ4(r4, q)δ5) = δ1δ4(r4, r1)δ2δ5 ,
dladp,q(δ1(p, q)δ3(r3, p)δ4(q, r4)δ5) = δ1δ4δ3(r3, r4)δ5 ,
dladp,q(δ1(r1, p)δ2(q, r2)δ3(p, q)δ5) = δ1(r1, r2)δ3δ2δ5 ,

where r1, r2, r3, r4, r5 ∈ Πκ, and δ1, δ2, δ3, δ4, δ5 ∈ (Γκ ∪Ω)�.

94 Tero Harju, Ion Petre, and Grzegorz Rozenberg

Note that each operation removes one or two pointers from the MDS-IES
descriptor. When assembled (on a linear or on a circular string), the descriptor
has no pointers anymore. Thus, the whole process of gene assembly may be
viewed as a process of pointer removals.

If a composition ϕ of ld, hi, and dlad operations is applicable to an MDS-
IES descriptor γ, then ϕ(γ) is a set of linear and circular MDS-IES descriptors.
We say that ϕ is a successful reduction for γ if no pointers occur in any of the
descriptors in ϕ(γ).

Example 2. Consider the MDS-IES descriptor δ = (b, 2)I1(2, 3)I2(4, e)I3(3, 4).
An assembly strategy for this descriptor in the intramolecular model is the fol-
lowing:

dlad3,4(δ) = (b, 2)I1(2, e)I3I2,

ld2(dlad3,4(δ)) = (b, e)I3I2 + [I1].

��

3.2 The Intermolecular Model

Three operations were postulated in [19] and [20] for gene assembly. One of these
operations is intramolecular: it is a sort of a generalized version of the ld opera-
tion, while the other two are intermolecular: they involve recombination between
two different DNA molecules, linear or circular, see Figs. 5-6. We describe these
operations below in terms of pointers, similarly as for the intramolecular model.

(i) In the first operation a DNA molecule containing two occurrences of the same
pointer x (on the same strand) is folded so that they get aligned to guide
the recombination, see Fig. 5. Note that unlike in ld, the two occurrences of
x may have more than just one IES between them.

(ii) The second operation is the inverse of the first one: two DNA molecules,
one linear and one circular, each containing one occurrence of a pointer x get
aligned so that the two occurrences of x guide the recombination, yielding
one linear molecule – see Fig. 5.

(iii) The third operation is somewhat similar to the second one: two linear
DNA molecules, each containing one occurrence of a pointer x get aligned so
that the two occurrences of x guide the recombination, yielding two linear
molecules, see Fig. 6.

Note that the three molecular operations in this model are reversible, unlike
the operations in the intramolecular model – this is one of the main differences
between the two models.

We formalize now this intermolecular model in terms of reduction rules for
MDS-IES descriptors. The three operations defined above are modelled by the
following reduction rules for MDS-IES descriptors:

Two Models for Gene Assembly in Ciliates 95

x
x

x

Fig. 5. Illustration of the intramolecular operation of the Landweber-Kari model

x

x

x

Fig. 6. Illustration of the intermolecular operation of the Landweber-Kari model

δ1(q, p)δ2(p, r)δ3
p−−→ δ1(q, r)δ3 + [δ2], (1)

δ1(p, q)δ2(r, p)δ3
p−−→ δ1δ3 + [δ2(r, q)], (2)

δ1(p, q)δ2 + [(r, p)δ3]
p−−→ δ1δ3(r, q)δ2, (3)

δ1(q, p)δ2 + [(p, r)δ3]
p−−→ δ1(q, r)δ3δ2, (4)

δ1(p, q)δ2 + δ3(r, p)δ4
p−−→ δ1δ4 + δ3(r, q)δ2, (5)

where δ1, δ2, δ3 ∈ (Γκ ∪ Γ κ ∪Ωκ ∪Ωκ)∗.
Note that each reduction rule above removes one pointer, thus making the

whole process irreversible. Although the intermolecular model was specifically
intended to be reversible, this restriction helps in unifying the notation for (and
the reasoning about) the two models and it suffices for the results presented in
this paper.

If a composition ϕ of the reduction rules (1)-(5) is applicable to an MDS-
IES descriptor γ, then ϕ(γ) is a set of linear and circular MDS-IES descriptors.
We say that ϕ is a successful reduction for γ if no pointers occur in any of the
descriptors in ϕ(γ).

Example 3. Consider the MDS-IES descriptor δ = (b, 2)I1(2, 3)I2(4, e)I3(3, 4) of
Example 2. An assembly strategy for this descriptor in the intermolecular model
is the following:

δ
3−−→ (b, 2)I1(2, 4) + [I2(4, e)I3]

4−−→ (b, 2)I1(2, e)I3I2
2−−→ (b, e)I3I2 + [I1].

Note that although the assembly strategy is very different from the one in Ex-
ample 2, the final result of the assembly, {(b, e)I3I2, [I1]} is the same in the two
models. ��

96 Tero Harju, Ion Petre, and Grzegorz Rozenberg

4 Reduction Strategies in the Two Models

The obvious difficulty with the intermolecular model is that it cannot deal with
DNA molecules in which a pointer is inverted – this is the case, e.g., for the
actin I gene in S.nova. Nevertheless, we can show that inverted pointers can be
handled in this model, provided the input molecule (or its MDS-IES descriptor)
is available in two copies. Moreover, we consider all linear descriptors modulo
inversion. The first assumption is essentially used in research on the intermolec-
ular model, see [16–18, 20]. The second assumption is quite natural whenever
we model double-stranded DNA molecules. As a matter of fact, we use the two
assumptions to conclude that for each input descriptor, both the descriptor and
its inversion are available. Then the hi-rule can be simulated using the inter-
molecular rules as follows.

Let δ = δ1(p, q)δ2(p, r)δ3 (the other case is treated similarly) be an MDS-
IES descriptor to which hip is applicable. Therefore, we assume that also δ =
δ3(r, p)δ2(q, p)δ1 is available. Then we obtain

δ + δ
p−−→ δ1 δ2 (q, p) δ1 + δ3 (r, q)δ2 (p, r) δ3
p−−→ δ1δ2(q, r)δ3 + δ3(r, q)δ2δ1 = hip(δ) + hip(δ) .

Note that, having two copies of the initial string available, this rule yields two
copies of hip(w).

We also observe that the ld-rule is a particular case of intermolecular rules (1)
and (2), obtained by setting δ2 = Λ. Moreover, the dlad-rule can be simulated
using intermolecular rules as follows.

Let δ = δ1(p, r1)δ2(q, r2)δ3(r3, p)δ4(r4, q)δ5) be an MDS-IES descriptor to
which dladp,q is applicable – all other cases can be treated similarly. Then

δ
p−−→ δ1δ4(r4, q)δ5 + [δ2(q, r2)δ3(r3, r1)] = δ1δ4(r4, q)δ5 + [δ3(r3, r1)δ2(q, r2)]
q−−→ δ1δ4(r4, r2)δ3(r3, r1)δ2δ5 = dladp,q(w) .

The following results is thus proved.

Theorem 1. Let δ be an MDS-IES descriptor having a successful reduction in
the intramolecular model. If two copies of δ are available, then δ has a successful
reduction in the intermolecular model.

The following universality result has been proved in [8], see [7] for more
details.

Theorem 2. Any MDS-IES descriptor has a successful reduction in the in-
tramolecular model.

Theorems 1 and 2 give the following universality result for the intermolecular
model.

Two Models for Gene Assembly in Ciliates 97

Corollary 1. Any MDS-IES descriptor available in two copies has a successful
reduction in the intermolecular model.

5 Invariants

In the following two examples we consider the actin I gene in S.nova and inves-
tigate assembly strategies for this gene in the intra- and inter-molecular models.

Example 4. Consider the actin gene in Sterkiella nova, see Fig. 1, having the
MDS–IES descriptor

δ = (3, 4)I1(4, 5)I2(6, 7)I3(5, 6)I4(7, 8)I5(9, e)I6(3, 2)I7(b, 2)I8(8, 9).

Consider then an assembly strategy for δ, e.g., ld4 dlad5,6 ld7 dlad8,9 hi2 hi3:

ld4(δ) = (3, 5)I2(6, 7)I3(5, 6)I4(7, 8)I5(9, e)I6(3, 2)I7(b, 2)I8(8, 9) + [I1],

dlad5,6(ld4(δ)) = I0(3, 7)I3I2I4(7, 8)I5(9, e)I6(3, 2)I7(b, 2)I8(8, 9) + [I1],

ld7(dlad5,6(ld4(δ))) = (3, 8)I5(9, e)I6(3, 2)I7(b, 2)I8(8, 9) + [I1] + [I3I2I4],

dlad8,9(ld7(dlad5,6(ld4(δ)))) = (3, e)I6(3, 2)I7(b, 2)I8I5 + [I1] + [I3I2I4],

hi2(dlad8,9(ld7(dlad5,6(ld4(δ))))) = (3, e)I6(3, b)I7I8I5 + [I1] + [I3I2I4],

hi3(hi2(dlad8,9(ld7(dlad5,6(ld4(δ)))))) = I6(e, b)I7I8I5 + [I1] + [I3I2I4].

Thus, the gene is assembled in the inverted order, placed in a linear DNA
molecule, with the IES I6 preceding it and the sequence of IESs I7 I8 I5 suc-
ceeding it. Two circular molecules are also produced: [I1] and [I3I2I4]. ��
Example 5. Consider the same actin gene in Sterkiella nova with the MDS–IES
descriptor

δ = (3, 4)I1(4, 5)I2(6, 7)I3(5, 6)I4(7, 8)I5(9, e)I6(3, 2)I7(b, 2)I8(8, 9) .

Then δ can be assembled in the intermolecular model as follows:

δ
5−−→ (3, 4)I1(4, 6)I4(7, 8)I5(9, e)I6(3, 2)I7(b, 2)I8(8, 9) + [I2(6, 7)I3]
8−−→ (3, 4)I1(4, 6)I4(7, 9) + [I5(9, e)I6(3, 2)I7(b, 2)I8] + [I2(6, 7)I3]
4−−→ (3, 6)I4(7, 9) + [I1] + [I5(9, e)I6(3, 2)I7(b, 2)I8] + [I2(6, 7)I3]
7−−→ (3, 6)I4I3I2(6, 9) + [I1] + [I5(9, e)I6(3, 2)I7(b, 2)I8]
6−−→ (3, 9) + [I4I3I2] + [I1] + [I5(9, e)I6(3, 2)I7(b, 2)I8]
9−−→ (3, e)I6(3, 2)I7(b, 2)I8I5 + [I4I3I2] + [I1] .

Since δ is also available, the assembly continues as follows. Here, for a (circular)
string τ , we use 2 · τ to denote τ + τ :

98 Tero Harju, Ion Petre, and Grzegorz Rozenberg

δ + δ −→ . . . −→ (3, e)I6(3, 2)I7(b, 2)I8I5 + I5I8(2, b)I7(2, 3)I6(e, 3)
+ 2 · [I4I3I2] + 2 · [I1]

2−−→ (3, e)I6(3, b)I7(2, 3)I6(e, 3) + I5I8I7(b, 2)I8I5
+ 2 · [I4I3I2] + 2 · [I1]

2−−→ (3, e)I6(3, b)I7I8I5 + I5I8I7(b, 3)I6(e, 3) + 2 · [I4I3I2] + 2 · [I1]
3−−→ (3, e)I6 + I5I8I7(b, 3)I6(e, b)I7I8I5 + 2 · [I4I3I2] + 2 · [I1]
3−−→ I6(e, b)I7I8I5 + I5I8I7(b, e) + 2 · [I4I3I2] + 2 · [I1]

= 2 · (I6(e, b)I7I8I5 + +[I1] + [I3I2I4]) .

Note that this intermolecular assembly predicts the same context for the as-
sembled string, the same set of residual strings, and the same linearity of the
assembled string as the intramolecular assembly considered in Example 4. ��

It is clear from the above two examples, see also Examples 2 and 3, that the
two models for gene assembly predict completely different assembly strategies for
the same micronuclear gene. As it turns out however, the predicted final result
of the assembly, i.e., the linearity of the assembled gene and the exact nucleotide
sequences of all excised molecules, is the same in the two models, see [7] for
details. The following is a result from [7], see also [10].

Theorem 3. Let δ be an MDS–IES descriptor. If ϕ1 and ϕ2 are any two suc-
cessful assembly strategies for δ, intra- or inter-molecular, then

(1) if ϕ1(δ) is assembled in a linear descriptor, then so is ϕ2(δ);
(2) if ϕ1(δ) is assembled in a linear descriptor in orthodox order, then so is

ϕ2(δ);
(3) The sequence of IESs flanking the assembled gene is the same in ϕ1(δ) and

ϕ2(δ);
(4) The sequence of IESs in all excised descriptors is the same in ϕ1(δ) and

ϕ2(δ);
(5) There si an equal number of circular descriptors in ϕ1(δ) and ϕ2(δ).

Example 6. Consider the MDS–IES descriptor

δ = (10, 8)I1(3, b)I2(5, 3)I3(10, 11)I4(5, 8)I5(11, e) .

A successful assembly strategy for δ in the intramolecular model is the following:

hi10(δ) = I3(3, 5)I2(b, 3)I1(8, 11)I4(5, 8)I5(11, e),

dlad8,11(hi10(δ)) = I3(3, 5)I2(b, 3)I1I5I4(5, e),

dlad3,5(dlad8,11(hi10(δ))) = I3I1I5I4I2(b, e).

Two Models for Gene Assembly in Ciliates 99

Thus, δ is always assembled in a linear molecule, and no IES is excised during
the assembly process, i.e., no ld is ever applied in a process of assembling δ.
Moreover, the assembled descriptor will always be preceded by the IES sequence
I3I1I5I4I2 and followed by the empty IES sequence. ��
Example 7. Consider the MDS–IES descriptor

δ = (10, 8)I1(3, b)I2(5, 3)I3(10, 11)I4(5, 8)I5(11, e)

from Example 6. Then δ can be assembled in the intermolecular model as follows:

δ
3−−→ (10, 8)I1I3(10, 11)I4(5, 8)I5(11, e) + [I2(5, b)]
11−−→ (10, 8)I1I3(10, e) + [I4(5, 8)I5] + [I2(5, b)] .

Since also δ is available, the assembly continues as follows:

δ + δ −→ . . . −→ (10, 8)I1I3(10, e) + (e, 10)I3I1(8, 10)

+ 2 · [I4(5, 8)I5] + 2 · [I2(5, b)]
10−−→ I3I1(8, 10) + (e, 8)I1I3(10, e) + 2 · [I4(5, 8)I5] + 2 · [I2(5, b)]
10−−→ I3I1(8, e) + (e, 8)I1I3 + [I4(5, 8)I5] + [I5(8, 5)I4] + 2 · [I2(5, b)]

8, 8−−→ I3I1I5I4(5, e) + (e, 5)I4I5I1I3 + [(5, b)I2] + [I2(b, 5)]
5, 5−−→ I3I1I5I4I2(b, e) + (e, b)I2I4I5I1I3

= 2 · I3I1I5I4I2(b, e).

Note that, again, we obtain the same context for the assembled string, the same
set of residual strings, and the same linearity of the assembled string as the
intramolecular assembly considered in Example 6. ��

References

1. Daley, M., Computational Modeling of Genetic Processes in Stichotrichous Cil-
iates. PhD thesis, University of London, Ontario, Canada (2003)

2. Daley, M., and Kari, L., Some properties of ciliate bio-operations. Lecture Notes
in Comput. Sci. 2450 (2003) 116–127

3. Daley, M., Ibarra, O. H., and Kari, L., Closure propeties and decision questions
of some language classes under ciliate bio-operations. Theoret. Comput. Sci.,
to appear

4. Ehrenfeucht, A., Harju, T., Petre, I., Prescott, D. M., and Rozenberg, G., For-
mal systems for gene assembly in ciliates. Theoret. Comput. Sci. 292 (2003)
199–219

5. Ehrenfeucht, A., Harju, T., Petre, I., and Rozenberg, G., Patterns of micronu-
clear genes in cliates. Lecture Notes in Comput. Sci. 2340 (2002) 279–289

100 Tero Harju, Ion Petre, and Grzegorz Rozenberg

6. Ehrenfeucht, A., Harju, T., Petre, I., and Rozenberg, G., Characterizing the
micronuclear gene patterns in ciliates. Theory of Comput. Syst. 35 (2002) 501–
519

7. Ehrenfeucht, A., Harju, T., Petre, I., Prescott, D. M., and Rozenberg, G., Com-
putation in Living Cells: Gene Assembly in Ciliates, Springer (2003).

8. Ehrenfeucht, A., Petre, I., Prescott, D. M., and Rozenberg, G., Universal and
simple operations for gene assembly in ciliates. In: V. Mitrana and C. Martin-
Vide (eds.) Words, Sequences, Languages: Where Computer Science, Biology
and Linguistics Meet, Kluwer Academic, Dortrecht, (2001) pp. 329–342

9. Ehrenfeucht, A., Petre, I., Prescott, D. M., and Rozenberg, G., String and graph
reduction systems for gene assembly in ciliates. Math. Structures Comput. Sci.
12 (2001) 113–134

10. Ehrenfeucht, A., Petre, I., Prescott, D. M., and Rozenberg, G., Circularity
and other invariants of gene assembly in cliates. In: M. Ito, Gh. Paun and
S. Yu (eds.) Words, semigroups, and transductions, World Scientific, Singapore,
(2001) pp. 81–97

11. Ehrenfeucht, A., Prescott, D. M., and Rozenberg, G., Computational aspects
of gene (un)scrambling in ciliates. In: L. F. Landweber, E. Winfree (eds.) Evo-
lution as Computation, Springer, Berlin, Heidelberg, New York (2001) pp. 216–
256

12. Harju, T., Petre, I., and Rozenberg, G., Gene assembly in ciliates: molecular
operations. In: G.Paun, G. Rozenberg, A.Salomaa (Eds.) Current Trends in
Theoretical Computer Science, (2004).

13. Harju, T., Petre, I., and Rozenberg, G., Gene assembly in ciliates: formal frame-
works. In: G.Paun, G. Rozenberg, A.Salomaa (Eds.) Current Trends in Theo-
retical Computer Science, (2004).

14. Harju, T., and Rozenberg, G., Computational processes in living cells: gene
assembly in ciliates. Lecure Notes in Comput. Sci. 2450 (2003) 1–20

15. Jahn, C. L., and Klobutcher, L. A., Genome remodeilng in ciliated protozoa.
Ann. Rev. Microbiol. 56 (2000), 489–520.

16. Kari, J., and Kari, L. Context free recombinations. In: C. Martin-Vide and
V. Mitrana (eds.) Where Mathematics, Computer Science, Linguistics, and Bi-
ology Meet, Kluwer Academic, Dordrecht, (2000) 361–375

17. Kari, L., Kari, J., and Landweber, L. F., Reversible molecular computation in
ciliates. In: J. Karhumäki, H. Maurer, G. Pǎun and G. Rozenberg (eds.) Jewels
are Forever, Springer, Berlin HeidelbergNew York (1999) pp. 353–363

18. Kari, L., and Landweber, L. F., Computational power of gene rearrangement.
In: E. Winfree and D. K. Gifford (eds.) Proceedings of DNA Bases Computers,
V American Mathematical Society (1999) pp. 207–216

19. Landweber, L. F., and Kari, L., The evolution of cellular computing: Nature’s
solution to a computational problem. In: Proceedings of the 4th DIMACS Meet-
ing on DNA-Based Computers, Philadelphia, PA (1998) pp. 3–15

20. Landweber, L. F., and Kari, L., Universal molecular computation in ciliates.
In: L. F. Landweber and E. Winfree (eds.) Evolution as Computation, Springer,
Berlin Heidelberg New York (2002)

21. Prescott, D. M., Cutting, splicing, reordering, and elimination of DNA se-
quences in hypotrichous ciliates. BioEssays 14 (1992) 317–324

22. Prescott, D. M., The unusual organization and processing of genomic DNA in
hypotrichous ciliates. Trends in Genet. 8 (1992) 439–445

23. Prescott, D. M., The DNA of ciliated protozoa. Microbiol. Rev. 58(2) (1994)
233–267

Two Models for Gene Assembly in Ciliates 101

24. Prescott, D. M., The evolutionary scrambling and developmental unscabling
of germlike genes in hypotrichous ciliates. Nucl. Acids Res. 27 (1999), 1243 –
1250.

25. Prescott, D. M., Genome gymnastics: unique modes of DNA evolution and
processing in ciliates. Nat. Rev. Genet. 1(3) (2000) 191–198

26. Prescott, D. M., and DuBois, M., Internal eliminated segments (IESs) of
Oxytrichidae. J. Eukariot. Microbiol. 43 (1996) 432–441

27. Prescott, D. M., Ehrenfeucht, A., and Rozenberg, G., Molecular operations
for DNA processing in hypotrichous ciliates. Europ. J. Protistology 37 (2001)
241–260

28. Prescott, D. M., Ehrenfeucht, A., and Rozenberg, G., Template-guided recombi-
nation for IES elimination and unscrambling of genes in stichotrichous ciliates.
Technical Report 2002-01, LIACS, Leiden University (2002)

29. Prescott, D. M., and Rozenberg, G., How ciliates manipulate their own DNA –
A splendid example of natural computing. Natural Computing 1 (2002) 165–183

30. Prescott, D. M., and Rozenberg, G., Encrypted genes and their reassembly
in ciliates. In: M. Amos (ed.) Cellular Computing, Oxford University Press,
Oxford (2003)

On Self-Dual Bases of the Extensions of the

Binary Field

Mika Hirvensalo� and Jyrki Lahtonen

Department of Mathematics, University of Turku, FIN-20014, Turku, Finland.
TUCS – Turku Centre for Computer Science.

{mikhirve,lahtonen}@utu.fi

Abstract. There are at least two points of view when representing ele-
ments of F2n , the field of 2n elements. We could represent the (nonzero)
elements as powers of a generating element, the exponent ranging from 0
to 2n − 2. On the other hand, we could represent the elements as strings
of n bits. In the former representation, multiplication becomes a very
easy task, whereas in the latter one, addition is obvious. In this note, we
focus on representing F2n as strings of n bits in such a way that the natu-
ral basis (1, 0, . . . , 0), (0, 1, . . . , 0), . . ., (0, 0, . . . , 1) becomes self-dual. We
also outline an idea which leads to a very simple algorithm for finding
a self-dual basis. Finally we study multiplication tables for the natural
basis and present necessary and sufficient conditions for a multiplication
table to give F

n
2 a field structure in such a way that the natural basis is

self-dual.

1 Introduction and Preliminaries

The bit strings, and operations on them have an essential role in theoretical
computer science. The reason for this is very evident: to compute is to operate
finite sets and all finite sets can be encoded into binary strings. Therefore, all
properties (subsets) of finite sets can be represented by Boolean functions, that
is, by functions from bit strings to bits.

The most difficult problems in theoretical computer science can be repre-
sented in terms of Boolean functions. For instance, it is known that all Boolean
functions can be represented by Boolean circuits [7], but far too little is known
about the number of gates to implement those functions. Quite a simple counting
argument shows that on n variables, most Boolean functions need 2n

2n gates to
be implemented [7], and yet the best known lower bound is only linear in n.

If the scalar multiplication and addition are defined bitwise, the bit strings
of length n form a vector space of dimension n over the binary field. However,
for many applications it would be helpful if the bit strings could have even a
stronger algebraic structure. Numerous very good examples of such applications
can be found in the theory of error-correcting codes [5].

� Supported by the Academy of Finland under grant 44087.

J. Karhumäki et al. (Eds.): Theory Is Forever (Salomaa Festschrift), LNCS 3113, pp. 102–111, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

On Self-Dual Bases of the Extensions of the Binary Field 103

We will use notation Fq for the finite field of q elements, but we are going to
concentrate only on the case q = 2n. As a binary field we understand the two-
element field F2. An n-dimensional vector space over F2 is denoted, as usual,
by Fn

2 . The characters of the additive group of Fn
2 are well-known and easy to

define (see [2], for example): for each element y = (y1, . . . , yn) ∈ Fn
2 , there exists

a character χy defined as
χy(x) = (−1)x·y,

where x · y = x1y1 + . . .+ xnyn. Notice that x · y belongs to F2, but (−1)x·y is
interpreted in the most obvious way.

It turns out that all functions F
n
2 → C can be represented as linear combina-

tions of the characters [2]. The characters, in fact, have even a more important
role: there is an obvious way to introduce a Euclidean vector space structure
for the set of functions F

n
2 → C, and the characters form an orthonormal basis

of that Euclidean space. This role of the characters allows us to use discrete
analogues of Fourier analysis, see [1] and [3] for instance.

To introduce more algebraic structure in Fn
2 , it is always possible to define

(usually in many ways) the multiplication in Fn
2 in such a way that Fn

2 becomes
the field F2n , extension of F2 of degree n [5].

The trace of an element α ∈ F2n over the prime field F2 is defined as

Tr(α) = α+ α2 + α22
+ . . .+ α2n−1

,

and it is a well-known fact that always Tr(α) ∈ F2, and that Tr : F2n → F2

is a linear mapping satisfying |Ker(Tr)| = 2n−1. As an easy consequence of the
definition, we have also that Tr(α2) = Tr(α) for each α ∈ F2n .

As a vector space over F2, field F2n has an n-element basis B = {α1, . . . , αn}
over F2. We say that the basis B is self-dual, if

Tr(αiαj) =
{

1, if i = j, and
0, if i �= j.

For some practical applications, bases of special types are valuable. For instance,
multiplication in a bit-string representation is in some sense “computationally
cheap” if the chosen basis is so-called normal basis [6]. In some other situations,
a self-dual basis is extremely welcome. Consider, for example, the characters of
the additive group of F2n . As it is well-known, they all are of form

ψy(x) = (−1)Tr(xy),

where y ∈ F2n [5]. Assuming that the basis {α1, . . . , αn} is self-dual, we can
represent

x = x1α1 + . . .+ xnαn

and
y = y1α1 + . . .+ ynαn,

104 Mika Hirvensalo and Jyrki Lahtonen

where xi, yi ∈ F2. Using this representation we can find out that

Tr(xy) = Tr(
n∑

i=1

xiαi

n∑
j=1

yjαj) =
n∑

i=1

n∑
j=1

xiyj Tr(αiαj) =
n∑

i=1

xiyi.

But then
ψy(x) = (−1)x1y1+...+xnyn ,

which is to say that the character value (character determined by the element
y = y1α1 + . . .+ ynαn) on element x = x1α1 + . . .+ xnαn is exactly the same as
the corresponding character value in the additive group Fn

2 .

2 Finding a Self-Dual Basis

In this section, we outline the idea of a very simple algorithm to find a self-dual
basis of F2n . It seems that similar ideas were already present in [4].

The most crucial observation for the algorithm is the following.

Lemma 1. Matrix ⎛⎝1 0 0
0 0 1
0 1 0

⎞⎠ ∈ F
3×3
2

can be diagonalized.

Proof. A straightforward calculation shows that⎛⎝1 0 1
1 1 0
1 1 1

⎞⎠⎛⎝1 0 0
0 0 1
0 1 0

⎞⎠⎛⎝1 1 1
0 1 1
1 0 1

⎞⎠ =

⎛⎝1 0 0
0 1 0
0 0 1

⎞⎠
and that the diagonalizing matrix is indeed invertible. ��

Let now B = {α1, . . . , αn} be any basis of F2n/F2, and define a matrix
M ∈ F

n×n
2 as

Mij = Tr(αiαj).

ClearlyM is symmetric. Matrix M is also invertible, for otherwise its rows would
be linearly dependent, and therefore we could find elements c1, . . ., cn ∈ F2 not
all zero such that

n∑
i=1

ci Tr(αiαj) = 0

for each j. But this would mean that there would be an element γ = c1α1 +
. . .+cnαn ∈ Fn

2 such that Tr(γαj) = 0 for each basis element αj . It would follow
that mapping α !→ Tr(γα) is identically zero, which implies that γ = 0. But this
would contradict the fact that there is a nonzero element ci.

If M is a diagonal matrix, then B is already a self-dual basis (since M is
invertible, there cannot be zeros in the diagonal). Assume then that M is not

On Self-Dual Bases of the Extensions of the Binary Field 105

diagonal. Since B is a basis, not all the diagonal elements are 0, for otherwise
Tr(α2

i) = Tr(αi) = 0 for each basis element αi, which would contradict the
property |Ker(Tr)| = 2n−1.

Because there is at least one nonzero element in the diagonal, there exists an
invertible matrix E1 ∈ F

n×n
2 such that E1MET

1 can be written as

E1MET
1 =

(
1 0
0 M1

)
,

where M1 ∈ F
(n−1)×(n−1)
2 is symmetric.

Now matrix M1 must have nonzero elements, for otherwise M would not be
invertible. If M1 has a nonzero diagonal element, we can again find a matrix
E2 ∈ F

n×n
2 such that

E2E1MET
1 E

T
2 =

⎛⎝ 1 0
0 1 0

0 M2

⎞⎠ ,

where M2 ∈ F
(n−2)×(n−2)
2 is a symmetric matrix.

If M1 does not contain any nonzero element in its diagonal, we can find,
because M1 is symmetric, an invertible matrix E′

2 ∈ F
(n−1)×(n−1)
2 such that

E′
2M1E

′T
2 =

⎛⎝ 0 1
1 0 0

0 M2

⎞⎠ ,

where M2 is an (n − 3) × (n − 3)-matrix. Matrix E′
2 can be straightforwardly

extended to an invertible n× n-matrix E2 which satisfies

E2E1MET
1 E

T
2 =

⎛⎜⎜⎝
1 0 0
0 0 1
0 1 0

0

0 M2

⎞⎟⎟⎠
On the other hand, by Lemma 1, the 3 × 3-matrix in the left upper corner is
diagonalizable, which implies that there exists an invertible matrix E3 ∈ F

n×n
2

such that

E3MET
3 =

⎛⎜⎜⎝
1 0 0
0 1 0
0 0 1

0

0 M2

⎞⎟⎟⎠ .

Continuing the same reasoning, we can eventually find an invertible matrix
E ∈ F

n×n
2 such that EMET is diagonal. Since EMET is invertible, necessarily

EMET = I is the identity matrix.
Now that E is invertible, set {β1, . . . , βn} defined by

βi =
n∑

k=1

Eikαk

106 Mika Hirvensalo and Jyrki Lahtonen

is also a basis of F2n/F2, and

βiβj =
n∑

k=1

Eikαk

n∑
l=1

Ejlαl =
n∑

k=1

n∑
l=1

EikEjlαkαl.

It follows that

Tr(βiβj) =
n∑

k=1

n∑
l=1

EikEjl Tr(αkαl)

=
n∑

k=1

n∑
l=1

EikMklEjl

= (EMET)ij = Iij ,

which proves that basis {β1, . . . , βn} is self-dual.

3 Multiplication Tables

Assume now that {α1, . . . , αn} is a self-dual basis of F2n/F2, and choose a coor-
dinate representation e1 = (1, 0, . . . , 0), e2 = (0, 1, . . . , 0), . . ., en = (0, 0, . . . , 1)
for the basis elements α1, α2 . . ., αn. Moreover, define matrices C(1), . . ., C(n) ∈
F

n×n
2 by condition

αi · αj =
n∑

k=1

C
(k)
ij αk. (1)

Now that ei is merely a renaming of αi, we can build up a multiplication
operation in Fn

2 by first defining

ei · ej =
n∑

k=1

C
(k)
ij ek,

and then extending this to be a bilinear mapping Fn
2 × Fn

2 → Fn
2 . This clearly

defines a field structure for Fn
2 in such a way, that the vectors e1, . . ., en of the

natural basis form a self-dual basis of Fn
2 .

It is clear that the matrices C(k) are symmetric. Examples of multiplication
tables of F3

2 and F4
2 are shown in Figures 1 and 3. The corresponding matrices

are shown in Figures 2 and 4, respectively.
As mentioned above, the matrices found this way are symmetric, but even

more interesting symmetries can be found. Consider, for instance, Figure 1 and
notice that, by the definition, matrix C(1) is formed by taking the first columns
which are under vectors (1, 0, 0), (0, 1, 0), and (0, 0, 1) (which are above the
horizontal line), respectively. Again by definition, matrixC(2) is formed by taking
the second columns under those vectors, and C(3) by picking up the last columns.
Interestingly, the same matrices C(1), C(2), and C(3) can be obtained by directly
forming 3×3-matrices of the row vectors which lie under vectors (1, 0, 0), (0, 1, 0),
and (0, 0, 1) (which are above the horizontal line).

On Self-Dual Bases of the Extensions of the Binary Field 107

· (1, 0, 0) (0, 1, 0) (0, 0, 1)
(1, 0, 0) (0, 1, 0) (1, 0, 1) (0, 1, 1)
(0, 1, 0) (1, 0, 1) (0, 0, 1) (1, 1, 0)
(0, 0, 1) (0, 1, 1) (1, 1, 0) (1, 0, 0)

Fig. 1. Multiplication table of F
3
2

C(1) =

⎛⎝ 0 1 0
1 0 1
0 1 1

⎞⎠ , C(2) =

⎛⎝ 1 0 1
0 0 1
1 1 0

⎞⎠ , C(3) =

⎛⎝ 0 1 1
1 1 0
1 0 0

⎞⎠

Fig. 2. Matrices corresponding to the multiplication table of F
3
2

· (1, 0, 0, 0) (0, 1, 0, 0) (0, 0, 1, 0) (0, 0, 0, 1)
(1, 0, 0, 0) (1, 1, 0, 1) (1, 0, 0, 1) (0, 0, 1, 1) (1, 1, 1, 1)
(0, 1, 0, 0) (1, 0, 0, 1) (0, 1, 1, 1) (0, 1, 1, 0) (1, 1, 0, 0)
(0, 0, 1, 0) (0, 0, 1, 1) (0, 1, 1, 0) (1, 1, 1, 0) (1, 0, 0, 1)
(0, 0, 0, 1) (1, 1, 1, 1) (1, 1, 0, 0) (1, 0, 0, 1) (1, 0, 1, 1)

Fig. 3. Multiplication table of F
4
2

C(1) =

⎛⎜⎜⎝
1 1 0 1
1 0 0 1
0 0 1 1
1 1 1 1

⎞⎟⎟⎠ , C(2) =

⎛⎜⎜⎝
1 0 0 1
0 1 1 1
0 1 1 0
1 1 0 0

⎞⎟⎟⎠ ,

C(3) =

⎛⎜⎜⎝
0 0 1 1
0 1 1 0
1 1 1 0
1 0 0 1

⎞⎟⎟⎠ , C(4) =

⎛⎜⎜⎝
1 1 1 1
1 1 0 0
1 0 0 1
1 0 1 1

⎞⎟⎟⎠
Fig. 4. Matrices corresponding to the multiplication table of F

4
2

Another interesting property is that the matrices C(1), C(2), and C(3) sum
up to the identity matrix. A more peculiar feature is that one of the matrices
(in this example C(1)) generate a multiplicative group of order seven, and that
group augmented with the zero matrix forms the field of eight elements. The
following theorem and its proof clarify the phenomena mentioned above.

Theorem 1. Let {α1, . . . , αn} be a self-dual basis of F2n/F2, and matrices C(k)
ij

defined as in (1). Then the following conditions hold:

1. C(k)
ij = C

(i)
kj for each i, j, k.

2. If (a1, . . . , an) �= (0, . . . , 0), then det(a1C
(1) + . . .+ anC

(n)) �= 0.

108 Mika Hirvensalo and Jyrki Lahtonen

3. C(i)C(j) = C(j)C(i) for each i, j.
4. C(1) + . . .+ C(n) = I.
5. C(i)T

= C(i) for each i ∈ {1, . . . , n}.
Proof. Condition 5 is clear by the definition of the matrices C(i). Taking the
traces of the both sides of the equation

αiαj =
n∑

l=1

C
(l)
ij αl (2)

gives

Tr(αiαj) =
n∑

l=1

C
(l)
ij Tr(αl) =

n∑
l=1

C
(l)
ij ,

which proves 4. Multiplication of (2) by αk and taking the traces gives

Tr(αiαjαk) =
n∑

l=1

C
(l)
ij Tr(αlαk) = C

(k)
ij ,

which shows that the condition 1 is satisfied. In fact, the above equation shows
directly that when referring to the matrix element C(k)

ij , we can permute i, j,
and k in any way.

We can now show that the matrices C(i) in fact generate a matrix repre-
sentation of the field F2n (the zero matrix must, of course, be included, too):
Any mapping F2n → F2n defined by rule x !→ αx is linear, and can therefore be
also considered as a linear mapping Fn

2 → Fn
2 . The matrix of the linear mapping

Fn
2 → Fn

2 corresponding to element α is known as a matrix representation of
α ∈ F2n . It is a well-known fact that the matrices found in this way also form
field F2n with respect to the ordinary matrix sum and multiplication. The set of
matrices found in this way is called a matrix representation of field F2n . In what
follows, we use basis {α1, . . ., αn} to present those matrices.

Let us fix an element α =
∑n

i=1 aiαi ∈ F2n . Then for each basis element αj

we have

ααj =
n∑

i=1

aiαiαj =
n∑

i=1

ai

n∑
k=1

C
(k)
ij αk =

n∑
k=1

n∑
i=1

aiC
(i)
jk αk,

which shows that matrix
∑n

i=1 aiC
(i) is in fact a matrix representation of element∑n

i=1 aiαi. Conditions 2 and 3 follow now immediately. ��
Also, a “converse” of the above theorem can be shown true.

Theorem 2. Let C(1), . . ., C(n) ∈ F
n×n
2 be matrices which satisfy the conditions

1-5 of the previous theorem. If the multiplication in Fn
2 is defined as

ei · ej =
n∑

k=1

C
(k)
ij ek

and extended to be a bilinear operation, then Fn
2 is becomes a field, and the

natural basis is self-dual.

On Self-Dual Bases of the Extensions of the Binary Field 109

Proof. The additive structure of Fn
2 is trivial, so we only have to consider the

multiplicative structure. That the distributive law holds, is straightforward. By
the condition 5 we have that

ei · ej =
n∑

k=1

C
(k)
ij ek =

n∑
k=1

C
(k)
ji ek = ej · ei,

meaning that the basis elements form a commuting set. It follows directly that
all elements of Fn

2 commute in multiplication.
It follows from the properties 1, 5, and 4 that

(n∑
i=1

ei

)
· ej =

n∑
i=1

ei · ej =
n∑

i=1

n∑
k=1

C
(k)
ij ek =

n∑
k=1

m∑
i=1

C
(i)
jk ek = ej ,

which shows that e1 + . . .+ en is the unit element with respect to the multipli-
cation.

A direct calculation shows that

(ei · ej) · ek =
n∑

r=1

C
(r)
ij er · ek =

n∑
s=1

n∑
r=1

C
(r)
ij C

(s)
rk es.

Similarly,

ei · (ej · ek) =
n∑

s=1

n∑
r=1

C
(r)
jk C

(s)
ir es.

To prove (ei ·ej)·ek = ei ·(ej ·ek) it remains to show that for each s ∈ {1, . . . , n},
equation

n∑
r=1

C
(r)
ij C

(s)
rk =

n∑
r=1

C
(r)
jk C

(s)
ir (3)

holds. But conditions 1 and 5 imply that the left hand side of (3) is equal to

n∑
r=1

C
(j)
ir C

(s)
rk = (C(j)C(s))ik,

and that the right hand side is equal to

n∑
r=1

C
(j)
rk C

(s)
ir = (C(s)C(j))ik = (C(j)C(s))ik,

because of the condition 3. It follows that the multiplication is associative.
It remains to demonstrate that each nonzero element has an inverse. For that

purpose, assume that an element a =
∑n

i=1 aiei is nonzero. To find the inverse
x of a, we have to solve the equation

a · x = 1 = e1 + . . .+ en,

110 Mika Hirvensalo and Jyrki Lahtonen

which can be written as
n∑

i=1

n∑
j=1

aixj

n∑
k=1

C
(k)
ij ek =

n∑
k=1

ek,

or, equivalently as
n∑

i=1

n∑
j=1

aixjC
(k)
ij = 1

for each k. Using again 1 and 5, the above can be written as

n∑
j=1

n∑
i=1

aiC
(i)
kj xj = 1. (4)

Now that (a1, . . . , an) �= (0, . . . , 0), matrix a1C
(1) + . . .+ anC

(n) is invertible by
condition 2, and hence the system of equations (4) is solvable. ��
Remark 1. Condition 2 of Theorem 1 seems to be the most complicated one,
but unfortunately it cannot be derived from the other conditions, even though
the matrices were all invertible. To see why this holds, consider the following
4× 4-matrices

C(1) =

⎛⎜⎜⎝
0 0 0 1
0 0 1 1
0 1 0 1
1 1 1 1

⎞⎟⎟⎠ , C(2) =

⎛⎜⎜⎝
0 0 1 1
0 0 1 0
1 1 1 1
1 0 1 0

⎞⎟⎟⎠ ,

C(3) =

⎛⎜⎜⎝
0 1 0 1
1 1 1 1
0 1 0 0
1 1 0 0

⎞⎟⎟⎠ , C(4) =

⎛⎜⎜⎝
1 1 1 1
1 0 1 0
1 1 0 0
1 0 0 0

⎞⎟⎟⎠ ,

which are all invertible. A direct calculation shows that they satisfy all conditions
but the second one, since det(C(1) + C(4)) = 0. This proves that the above
matrices cannot be used to create a field structure to F4

2. On the other hand,
the proof of Theorem 2 shows that the above matrices induce a commutative
ring structure in F4

2, since condition 2 was used only to prove the existence of
inverses of non-zero elements.

References

1. Y. Brandman, A. Orlitsky, and J. Hennessy: A Spectral Lower Bound Technique for
the Size of Decision Trees and Two-Level and/or Circuits, IEEE Transactions on
Computers 39:2, 282–287 (1990).

2. M. Hirvensalo: Quantum Computing, Springer (2001).
3. M. Hirvensalo: Studies on Boolean Functions Related to Quantum Computing, Ph.D

Thesis, University of Turku (2003).
4. A. Lempel: Matrix factorization over GF (2) and trace-orthogonal bases of GF (2n)∗,

SIAM Journal on Computing 4:2, 175–186 (1975).

On Self-Dual Bases of the Extensions of the Binary Field 111

5. F.J. MacWilliams and N.J.A. Sloane: The theory of error-correcting codes, North-
Holland (1981).

6. R.C. Mullin, I.M. Onyszchuk, S.A. Vanstone, and R.M. Wilson: Optimal normal
bases in GF(pn)∗, Discrete Applied Mathematics 22, 149–161 (1989).

7. C. H. Papadimitriou: Computational Complexity, Addison-Wesley (1994).

On NFA Reductions

Lucian Ilie1,�, Gonzalo Navarro2,��, and Sheng Yu1,� � �

1 Department of Computer Science, University of Western Ontario
N6A 5B7, London, Ontario, CANADA

ilie|syu@csd.uwo.ca
2 Department of Computer Science, University of Chile

Blanco Encalada 2120, Santiago, CHILE
gnavarro@dcc.uchile.cl

Abstract. We give faster algorithms for two methods of reducing the
number of states in nondeterministic finite automata. The first uses
equivalences and the second uses preorders. We develop restricted re-
duction algorithms that operate on position automata while preserving
some of its properties. We show empirically that these reductions are ef-
fective in largely reducing the memory requirements of regular expression
search algorithms, and compare the effectiveness of different reductions.

1 Introduction

Regular expression handling is at the heart of many applications, such as lin-
guistics, computational biology, pattern recognition, text retrieval, and so on.
An elegant theory gives the support to easily and efficiently solve many complex
problems by mapping them to regular expressions, then obtaining a nondeter-
ministic finite automaton (NFA) that recognizes it, and finally making it deter-
ministic (a DFA). However, a severe obstacle in any real implementation of the
above scheme is the size of the DFA, which can be exponential in the length of
the original regular expression.

Although a simple algorithm for minimizing DFAs exists [5], it has the prob-
lem of requiring prior construction of the DFA to later minimize it. This can be
infeasible because of main memory requirements and construction cost.

A much more promising (and more challenging) alternative is that of directly
reducing the NFA before converting it into a DFA. This has the advantage of
working over a much smaller structure (of size polynomial in the length of the
regular expression) and of building the smaller DFA without the need to go
through a larger one first.

However, the NFA state minimization problem is very hard (PSPACE-com-
plete, [10]) and therefore algorithms such as [11, 13, 14] cannot be used in prac-
tice. There are also algorithms which build small NFAs from regular expressions,

� Research partially supported by NSERC.
�� Supported in part by Fondecyt grant 1-020831.

� � � Research partially supported by NSERC.

J. Karhumäki et al. (Eds.): Theory Is Forever (Salomaa Festschrift), LNCS 3113, pp. 112–124, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

On NFA Reductions 113

see [7, 4], but they consider the total size, that is, they count both states and
transitions, and they increase artificially the number of states to reduce the num-
ber of transitions. As the implementation crucially depends on the number of
states, such algorithms may not help.

The approach we follow is reducing the size of a given NFA. The idea of
reducing the size of NFAs by merging states was first introduced by Ilie and Yu [8]
who used equivalence relations. Later, Champarnaud and Coulon [2] modified
the idea to work for preorders. In this paper we give fast algorithms to compute
these two reductions. We show that the algorithm based on equivalences can be
implemented in O(m log n) time on an NFA with n states and m transitions,
while that based on preorders can run in O(mn) time. Both results improve the
previous work.

When starting from a regular expression, the initial NFA, which we want
to reduce, is the position automaton. Navarro and Raffinot [17, 18] showed that
its special properties permit a more compact DFA representation. Our modified
reductions are restricted to preserve those properties and hence may produce
NFAs with more states than the original reductions.

Finally, we empirically evaluate the impact of the reduction algorithms. We
show that the number of NFA states can be reduced by 10%–40%. Those reduc-
tions translate into huge reductions in the DFA size, with factors of up to 10−6.
We also compare the alternatives of full reduction versus restricted reduction,
since the former yields less NFA states but the latter permits a more compact
DFA representation. The results show that full reduction is preferable in most
cases of interest.

2 Basic Notions

We recall here the basic definitions we need throughout the paper. For further
details we refer to [6] or [22].

Let A be an alphabet and A∗ the set of all words over A; ε denotes the empty
word. A language over A is a subset of A∗. A nondeterministic finite automaton
(NFA) is a tuple M = (Q,A, δ, I, F), where Q is the set of states, I ⊆ Q is the
set of initial states, F ⊆ Q is the set of final states, and δ : Q× A → 2Q is the
transition mapping; δ is extended to δ : 2Q×A∗ → 2Q by δ(S, a) =

⋃
q∈S δ(q, a)

and δ(S, ε) = S, δ(S, aw) = δ(δ(S, a), w), for S ⊆ Q, w ∈ A∗. The language
recognized by M is L(M) = {w ∈ A∗ | δ(I, w) ∩ F �= ∅}. For a state q ∈ Q, we
denote

LL(M, q) = {w ∈ A∗ | q ∈ δ(I, w)},
LR(M, q) = {w ∈ A∗ | δ(q, w) ∩ F �= ∅};

when M is understood, we write simply LL(q) and LR(q), resp. The reversed
automaton of M is M r = (Q,A, δr, F, I), where q ∈ δr(p, a) iff p ∈ δ(q, a).

3 NFA Reduction with Equivalences

The idea of reducing the size of NFAs by merging state was investigated first by
Ilie and Yu [8]; see also [9]. We describe it briefly in this section.

114 Lucian Ilie, Gonzalo Navarro, and Sheng Yu

Let M = (Q,A, δ, I, F) be an NFA. We define ≡R as the coarsest equivalence
relation over Q that satisfies:

(P1) ≡R ∩(F × (Q− F)) = ∅,
(P2) for any p, q ∈ Q, a ∈ A,

(
p ≡R q ⇒ ∀q′ ∈ δ(q, a), ∃p′ ∈ δ(p, a), q′ ≡R p′

)
.

The equivalence ≡R is the largest equivalence over Q which is right-invariant
w.r.t. M ; see [8, 9]. Given ≡R, the algorithm to reduce the automaton M using
it is trivial: simply merge all states in the same equivalence class and modify the
transitions accordingly. Here is an example.

Example 1. The NFA in Fig. 4 is reduced using ≡R as shown in Fig. 1; the
equivalence classes are also shown.

classes of ≡R: {0}
{1, 2, 3, 4, 5, 6}

a, b
1, 2, 3, 4, 5, 6 a, b0

Fig. 1. AR(τ) = Apos(τ)/≡R for τ = (a + b)(a∗ + ba∗ + b∗)∗

Symmetrically, the relation ≡L can be defined using the reversed automaton.
The automaton M can be reduced according to either equivalence. As examples
in [9] show, M can be reduced more using both equivalences but the problem of
finding the best way to do the reduction is open. Fig. 2 gives an example (from
[9]) where there is no unique way to reduce optimally using both ≡R and ≡L.

ß4

ß1, 3

ß4

ß3

ß2

ß1

ß0

c, d

c

c

c

a

c

ß3

ß4

b

a
ß1, 2

ß0

da

a, b

ß2

ß0

a

b

d

Fig. 2. An NFA and its corresponding quotients modulo ≡R and ≡L

4 Computing Equivalences

The algorithm in [8] for computing ≡R runs in low polynomial time but the
problem of finding a fast algorithm was left open. We show here that an old very
fast algorithm of Paige and Tarjan [19] can be used to solve the problem.

Recall some definitions from [19]. For a binary relation E over a finite set
U we denote, for any subset S ⊆ U , E−1(S) = {x | ∃y ∈ S such that xEy}. A
subset B ⊆ U is called stable w.r.t. S if either B ⊆ E−1(S) or B ∩E−1(S) = ∅.
A partition P of U is stable w.r.t. S if all the blocks of P are stable w.r.t. S.

On NFA Reductions 115

P is stable if it is stable w.r.t. each of its own blocks. The relational coarsest
partition problem is that of finding, for a given relation E and a partition P
over a set U , the coarsest stable refinement of P . Paige and Tarjan [19] gave an
algorithm for this problem which runs in time O(m logn) and space O(m + n),
where n = card(U), m = card(E). They remarked that the algorithm works also
for several relations.

This algorithm applies to our problem of finding ≡R as follows. For any
a ∈ A, denote δa = {(p, q) ∈ Q×Q | q ∈ δ(p, a)}. Then ≡R is the coarsest stable
refinement of the partition {F,Q− F} w.r.t. all relations δa, a ∈ A.

Therefore, if the number of states in our automaton is n and the number of
transitions is m, we have the following theorem.

Theorem 1. The equivalences ≡R and ≡L can be computed in time O(m logn)
and space O(m+ n).

It is interesting to notice that, to reduce NFAs by equivalences, we employed
an idea from deterministic finite automata (DFA) reduction and then, to make it
fast, we used an algorithm which was inspired itself from Hopcroft’s algorithm [5]
to reduce DFAs.

5 NFA Reduction with Preorders

Champarnaud and Coulon [2] noticed that a better reduction can be obtained
if the axioms (P1) and (P2) above are used to construct a preorder relation
instead of an equivalence. Let us denote the largest (w.r.t. inclusion) preorder
which verifies (P1) and (P2) by ⊆R. It is then immediate that p ⊆R q implies
LR(p) ⊆ LR(q).

As in the case of equivalences, the relation ⊆L is symmetrically defined using
the reversed automaton. Then, p ⊆L q implies LL(p) ⊆ LL(q).

The reduction with preorders is more complicated than with equivalences.
First, we can merge two states p and q as soon as any of the following conditions
is met:

(i) p ⊆R q and q ⊆R p,
(ii) p ⊆L q and q ⊆L p,
(iii) p ⊆R q and p ⊆L q.

However, after merging two states, the preorders ⊆R and ⊆L must be updated
such that their relation with the languages LR and LL (see above) is preserved.
For instance, in the case (i), assuming the merged state of p and q is denoted q,
the update amounts to removing from ⊆R all pairs (q, s) for which p �⊆R s. Case
(ii) is handled similarly and (iii) does not need any update.

An open problem here is how to merge the states using the two preorders
such that the reduction of the NFA is optimal; see the example in Fig. 2.

Since the preorder requirement is weaker than equivalence, p ≡R q implies
that p ⊆R q and q ⊆R p. The converse is not true in general (see [2] for an exam-
ple). Therefore, using preorders we have a chance to obtain a better reduction
of the NFA. It remains to investigate how much better.

116 Lucian Ilie, Gonzalo Navarro, and Sheng Yu

6 Computing Preorders

We give here an algorithm to compute the preorders ⊆R and ⊆L. Assuming that
Q = {1, 2, . . . , n} and the number of transitions is m, our algorithm runs in
time O(mn) and space O(n2). The best algorithm given by Champarnaud and
Coulon [2] runs in time O(mn2).

We shall compute the complement �⊆R of⊆R by the algorithm preorder(M)
from Fig. 3; ω is the relation which is �⊆R at the end. According to the definition
of ⊆R, its complement �⊆R is the smallest relation over Q such that

(P ′
1) (F × (Q− F)) ⊆�⊆R,

(P ′
2) for any i, j ∈ Q, a ∈ A,

(∃i′ ∈ δ(i, a), ∀j′ ∈ δ(j, a), i′ �⊆R j′ ⇒ i �⊆R j
)
.

So, we add (i, j) to �⊆R based on the fact that there is i′ ∈ δ(i, a) for which the
number of those j′ ∈ δ(j, a) with i′ �⊆R j′ is precisely card(δ(j, a)); that is, all
j′s. Therefore, we shall compute some matrices of counters N(a), for any a ∈ A;
N(a) is a n× n matrix such that

N(a)ij = card({� ∈ δ(j, a) | i �⊆R �}),
for all i, j ∈ Q. We start with all these counters set to zero and update them
anytime there is new information on �⊆R; any new pair added to �⊆R is en-
queued (steps 9 and 19) and later dequeued (step 11) and processed such that
all counters involved are adequately updated (step 14). Anytime such a counter
N(a)ik reaches maximum value card(δ(k, a)) (step 15), all pairs (j, k) such that
i ∈ δ(j, a) are added to �⊆R if not already there (steps 16–18).

Let us show that the algorithm preorder(M) computes correctly the pre-
order �⊆R. First, it is clear that �⊆R is obtained by adding all pairs in (P ′

1) and
then using (P ′

2) as long as pairs can still be added. Assume then

�⊆R= {(i1, j1), . . . , (ir, jr), . . . , (is, js)},
where the first r pairs are added because of (P ′

1) and the remaining ones due to
(P ′

2). We show that the algorithm preorder(M) computes the same relation.
Denote by ω the relation computed by the algorithm. Obviously, ω ⊆�⊆R. Assume
there is (it, jt) in �⊆R but not in ω; consider such a pair with the lowest index t.
It must be that t > r since all pairs in F × (Q−F) are certainly added to ω. As
(it, jt) is in �⊆R, there must be an i′ ∈ δ(it, a) such that (it, jt) was added to �⊆R

because all pairs (i′, j′), j′ ∈ δ(jt, a), were already in �⊆R. Thus, at least one of
those pairs (i′, j′) is not in ω. Since the index of (i′, j′) is strictly smaller than
t, a contradiction is obtained.

The time complexity of the above algorithm is O(m+n2) for the preprocessing
and proportional to

n∑
i=1

n∑
j=1

∑
a∈A

(card(δr(i, a)) + card(δr(j, a))) = O(mn)

for processing. Therefore, the time complexity is O(mn). The space complexity
is O(n2). We have proved the following theorem.

On NFA Reductions 117

preorder(M)

- given: an NFA M
- returns: �⊆R

1. for q ∈ Q, a ∈ A do //1–4: preprocessing
2. compute δr(q, a) as a linked list
3. compute card(δ(q, a))
4. initialize all N(a)s with 0s
5. ω ← ∅, C ← newqueue() //5–19: processing
6. for i ∈ F do //6–8: initialize ω
7. for j ∈ Q − F do //ω will be �⊆R at the end
8. ω ← ω ∪ {(i, j)}
9. enqueue(C, (i, j))

10. while C �= ∅ do
11. (i, j) ← dequeue(C) //11–19: updates due to
12. for a ∈ A do //(i, j) being added to ω
13. for k ∈ δr(j, a) do
14. N(a)ik ← N(a)ik + 1 //14: update counter
15. if N(a)ik = card(δ(k, a)) then //15–18: update ω
16. for j ∈ δr(i, a) do //when a counter is maximal
17. if (j, k) �∈ ω then
18. ω ← ω ∪ {(j, k)}
19. enqueue(C, (j, k))
20. return ω

Fig. 3. Algorithm for computing preorders

Theorem 2. The preorders ⊆R and ⊆L can be computed in time O(mn) and
space O(n2).

7 Position Automaton

We recall in this section the well-known construction of the position automaton3,
discovered independently by Glushkov [3] and McNaughton and Yamada [12].

Let α be a regular expression. The basic idea of the position automaton is to
assume that all occurrences of letters in α are different. For this, all letters are
made different by marking each letter with a unique index, called its position in α.
The set of positions of α is pos(α) = {1, 2, . . . , |α|A}, where |α|A is the number
of letter occurrences in α. We shall denote also pos0(α) = pos(α) ∪ {0}. The
expression obtained from α by marking each letter with its position is denoted
α ∈ A∗

, where A = {ai | a ∈ A, 1 ≤ i ≤ |α|A}. For instance, if α = a(baa+ b∗),
then α = a1(b2a3a4 + b∗5). Notice that pos(α) = pos(α). The same notation is
also used for unmarking, that is, a = a.

Three mappings first, last, and follow are then defined as follows (see [3]). For
any regular expression α and any i ∈ pos(α), we have:

3 This automaton is sometimes called Glushkov automaton; e.g., in [18].

118 Lucian Ilie, Gonzalo Navarro, and Sheng Yu

first(α) = {i | aiw ∈ L(α)},
last(α) = {i | wai ∈ L(α)},

follow(α, i) = {j | uaiajv ∈ L(α)}.
(1)

We extend follow by follow(α, 0) = first(α). Also, let last0(α) stand for last(α) if
ε �∈ L(α) and last(α) ∪ {0} otherwise.

The position automaton for α is

Apos(α) = (pos0(α), A, δpos, 0, last0(α))

where
δpos = {(i, a, j) | j ∈ follow(α, i), a = aj}.

Besides the property of accepting the language expressed by the original regular
expression, that is, L(Apos(α)) = L(α), the position automaton has two very
important properties. First, the number of states is always |α|A +1, which makes
it work better then Thompson’s automaton [20] in bit-parallel regular expression
search algorithms [18]. Second, all transitions incoming to any given state are
labelled by the same letter, a property exploited by Navarro and Raffinot [17, 18]
in regular expression search algorithms to represent the DFA using O(2|α|A +|A|)
bit-masks of length |α|A, rather than O(2|α|A |A|).

Example 2. Consider the regular expression τ = (a + b)(a∗ + ba∗ + b∗)∗. The
marked version of τ is τ = (a1 +b2)(a∗3 +b4a

∗
5 +b∗6)

∗. The values of the mappings
first, last, and follow for τ and the corresponding position automaton Apos(τ)
are given in Fig. 4.

first(τ) = {1, 2}
last(τ) = {1, 2, 3, 4, 5, 6}
i follow(τ, i)

1 {3, 4, 6}
2 {3, 4, 6}
3 {3, 4, 6}
4 {3, 4, 5, 6}
5 {3, 4, 5, 6}
6 {3, 4, 6}

b

a

a

b

b

6

2

3

0 a 54

1

a
a

b

b

b
a

b
b

b

a

b

b

a

b
b

a

Fig. 4. Apos(τ) for τ = (a + b)(a∗ + ba∗ + b∗)∗

The position automaton can be computed easily in cubic time using the
inductive definitions of first, last, and follow, but Brüggemann-Klein [1] showed
how to compute it in quadratic time.

On NFA Reductions 119

8 Reducing the Position Automaton

In this section we show how the position automaton can be reduced using equiv-
alences and/or preorders such that its essential properties are preserved.

Consider a regular expression α and define the equivalence ∼� over pos0(α)
by i ∼� j iff the letter labelling all transitions incoming to i is the same as the
one for j.

The idea is to reduce the position automaton such that the transitions in-
coming to a given state are still labelled the same. Therefore, any states we
merge must be in ∼�. Using equivalences, say ≡R, we merge according to the
equivalence ≡R ∩ ∼�. Fig. 5 shows an example.

classes of ≡R ∩ ∼l: {0}
{1, 3, 5}
{2, 4, 6}

b

2, 4, 6

1, 3, 5

b

b a

a

0

a

Fig. 5. Apos(τ)/≡R∩∼l for τ = (a + b)(a∗ + ba∗ + b∗)∗

Using preorders, we do just as before with the restriction imposed by ∼�.

9 Experimental Results

In this section we aim at establishing how significant is the reduction obtained
using equivalences, and its relevance to regular expression search algorithms.
In particular, we are interested in comparing two choices: full right-equivalence,
where the properties of the position automaton are not preserved (Section 3),
and restricted right-equivalence, where those properties are preserved (Section 8).
While full right-equivalence can potentially yield larger reductions in number of
NFA states, it requires a representation of O(2nf |A|) cells for the DFA (nf is the
number of reduced NFA states, A is the alphabet). Restricted right-equivalence
may yield more states, but permits a more compact representation in O(2nr +|A|)
cells for the DFA (nr is the number of NFA states after the restricted reduction).

We have tested regular expressions on DNA, having 10 to 100 alphabet sym-
bols, averaging over 10,000 expressions per length, with density of operators
from 0.1 to 0.4 (Section 9.1 gives more details on the generation process). For
each such expression, we built its position automaton (Section 7), and then ap-
plied full and restricted reduction. Figure 6 shows the reductions obtained, as

120 Lucian Ilie, Gonzalo Navarro, and Sheng Yu

a fraction of the original number of states (which was always n = 1 + |α|A be-
cause of Glushkov’s construction). There is a second version of the full reduction,
where the NFA is previously modified to include a self-loop at the initial state,
for search purposes. This permits no further restricted reduction, but allows a
slightly better full reduction, as it can be seen. Both reduction factors tend to
stabilize as n grows, being better for higher density of operators in the regular
expression. It is also clear that full reduction gives substantially better reductions
compared to restricted reduction (10%-20% better).

0.87

0.88

0.89

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

10 20 30 40 50 60 70 80 90 100

F
ra

ct
io

n
of

 fu
ll

N
F

A
 s

ta
te

s

Number of characters

Density of operators: 10%

Restricted right equivalence
Full right equivalence

Full right equivalence, search

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

10 20 30 40 50 60 70 80 90 100

F
ra

ct
io

n
of

 fu
ll

N
F

A
 s

ta
te

s

Number of characters

Density of operators: 20%

Restricted right equivalence
Full right equivalence

Full right equivalence, search

0.7
0.72
0.74
0.76
0.78
0.8

0.82
0.84
0.86
0.88
0.9

0.92

10 20 30 40 50 60 70 80 90 100

F
ra

ct
io

n
of

 fu
ll

N
F

A
 s

ta
te

s

Number of characters

Density of operators: 30%

Restricted right equivalence
Full right equivalence

Full right equivalence, search

0.6

0.65

0.7

0.75

0.8

0.85

0.9

10 20 30 40 50 60 70 80 90 100

F
ra

ct
io

n
of

 fu
ll

N
F

A
 s

ta
te

s

Number of characters

Density of operators: 40%

Restricted right equivalence
Full right equivalence

Full right equivalence, search

Fig. 6. Reduction factors in number of states obtained over position automata built
from regular expressions of lengths 10 to 100 and density of operators from 0.1 to 0.4,
built from DNA text

As explained, the above does not immediately mean that full reduction is
better, because its DFA representation must have one table per alphabet letter.
Figure 7 shows the reduction fraction in the representation of the DFA, com-
pared to that of the position automaton. This time the difference between the
search and the original automaton are negligible. As it can be seen, the restricted
reduction is convenient only for n ≤ 10 to n ≤ 30, depending on the operator
density. Note, on the other hand, that those short expression lengths imply that
even the original position automaton is not problematic in terms of space or
construction cost. That is, full reduction becomes superior precisely when the
space problem becomes important.

On NFA Reductions 121

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

10 20 30 40 50 60 70 80 90 100

F
ra

ct
io

n
of

 fu
ll

D
F

A
 c

el
ls

Number of characters

Density of operators: 10%

Restricted right equivalence
Full right equivalence

Full right equivalence, search

0

0.2

0.4

0.6

0.8

1

1.2

1.4

10 20 30 40 50 60 70 80 90 100

F
ra

ct
io

n
of

 fu
ll

D
F

A
 c

el
ls

Number of characters

Density of operators: 20%

Restricted right equivalence
Full right equivalence

Full right equivalence, search

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

10 20 30 40 50 60 70 80 90 100

F
ra

ct
io

n
of

 fu
ll

D
F

A
 c

el
ls

Number of characters

Density of operators: 30%

Restricted right equivalence
Full right equivalence

Full right equivalence, search

0

0.1

0.2

0.3

0.4

0.5

0.6

10 20 30 40 50 60 70 80 90 100

F
ra

ct
io

n
of

 fu
ll

D
F

A
 c

el
ls

Number of characters

Density of operators: 40%

Restricted right equivalence
Full right equivalence

Full right equivalence, search

Fig. 7. Reduction factors in DFA sizes obtained over position automata built from
regular expressions of lengths 10 to 100 and density of operators from 0.1 to 0.4, built
from DNA text

Figure 8 shows the same results in logarithmic scale, to show how large are
the savings due to full reductions when n becomes large. The second version of
NFA (for searching) is omitted since the difference in DFA size is unnoticeable.

As noted in [17, 18], DFA space and construction cost can be traded for
search cost as follows: A single table of O(2n) entries can be split into k tables
of size O(2n/k) each, so that each such table has to be accessed for each text
character in order to build the original entry. Hence the search cost becomes
O(k) per text character. If main memory is limited, a huge DFA actually means
larger search time, and a reduction in its size translate into better search times.
We have computed the number of tables needed with and without reductions
assuming that we dedicate 4 megabytes of RAM to the DFA. For the highest
operator density we have obtained speedups of up to 50% in search times, that
is, we need 2/3 of the tables needed by the original automaton.

9.1 Generating Regular Expressions

The choice of test patterns is always problematic when dealing with regular
expressions, since there is no clear concept of what a random regular expression
is and, as far as we know, there is no public repository of regular expressions

122 Lucian Ilie, Gonzalo Navarro, and Sheng Yu

0.001

0.01

0.1

1

10

10 20 30 40 50 60 70 80 90 100

F
ra

ct
io

n
of

 fu
ll

D
F

A
 c

el
ls

Number of characters

Density of operators: 10%

Restricted right equivalence
Full right equivalence

1e-05

0.0001

0.001

0.01

0.1

1

10

10 20 30 40 50 60 70 80 90 100

F
ra

ct
io

n
of

 fu
ll

D
F

A
 c

el
ls

Number of characters

Density of operators: 20%

Restricted right equivalence
Full right equivalence

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

10 20 30 40 50 60 70 80 90 100

F
ra

ct
io

n
of

 fu
ll

D
F

A
 c

el
ls

Number of characters

Density of operators: 30%

Restricted right equivalence
Full right equivalence

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

10 20 30 40 50 60 70 80 90 100

F
ra

ct
io

n
of

 fu
ll

D
F

A
 c

el
ls

Number of characters

Density of operators: 40%

Restricted right equivalence
Full right equivalence

Fig. 8. Reduction factors in DFA sizes obtained over position automata built from
regular expressions of lengths 10 to 100 and density of operators from 0.1 to 0.4, built
from DNA text. Note the logarithmic scale

available, except for a dozen of trivial examples. We have chosen to generate
random regular expressions as follows:

1. We choose a base real-world text, in this case DNA from Homo Sapiens.
2. We choose n and pick a random text substring of length n.
3. We choose an operator density 0 ≤ γ ≤ 1.
4. We apply a recursive procedure to convert a string of length � into a regular

expression:
(a) An empty string is converted into an empty regular expression. In the

rest, we assume a nonempty string.
(b) With probability 1 − γ we choose that the expression will be the con-

catenation of two subexpressions: a left part of �′ characters and a right
part of � − �′ characters, where �′ is chosen uniformly in the range
1 ≤ �′ ≤ �−1. We recursively convert both subparts into regular expres-
sions e1 and e2. The resulting expression is e1 · e2. If � = 1 we simply
write down the string character.

(c) Otherwise, if the parent in the recursion has just generated a Kleene
closure operator “∗”, we choose to add a union operator “|”, if not, we
choose with the same probability between a Kleene closure and a union.

On NFA Reductions 123

(d) If we chose that the expression will have a union operator, we choose a
left part of �′ characters and a right part of � − �′ characters, where �′

is chosen uniformly in the range 0 ≤ �′ ≤ �. We recursively convert both
subparts into regular expressions e1 and e2. The resulting expression is
e1|e2.

(e) If we chose to add a Kleene closure operator “∗” at the end of the string,
we recursively generate a regular expression e1 for the string. The re-
sulting expression is e1∗.

The above procedure is just one of the many possible alternatives to generate
random regular expressions one could argue for, but it has a couple of advantages.
First, it permits determining the length n (number of characters ofA) in advance.
Second, it takes the characters from the text, respecting its distribution. Third,
it permits us to choose expressions with more or less operators by varying γ. We
show experiments with γ = 0.10 to γ = 0.40. Examples obtained from our tests,
with n = 10, are “ACAT (T |ε)TT ∗ AG(T |ε)” and “A(CAT (ε|T ∗) ∗ ((ε|ε|T) ∗
TA∗) ∗ (ε|ε|GT))∗”, respectively.

10 Conclusion

We have developed faster algorithms to implement two existing NFA reduction
techniques. We have also adapted them to work over position automata while
preserving their properties that allow a compact DFA representation. Finally,
we have empirically assessed the practical impact of the reductions, as well as
the convenience of preserving or not the position automata properties.

Future work involves empirically evaluating the impact of using preorders
instead of equivalences. The former are more complex and slower to compute,
and it is not clear which is the optimal way to apply the different reductions,
hence the importance of determining their practical value.

References

1. Brüggemann-Klein, A., Regular expressions into finite automata, Theoret. Comput.
Sci. 120 (1993) 197 – 213.

2. Champarnaud, J.-M., and F. Coulon, NFA reduction algorithms by means of reg-
ular inequalities, in: Z. Ésik, Z. Fülöp, eds., Proc. of DLT 2003 (Szeged, 2003),
Lecture Notes in Comput. Sci. 2710, Springer-Verlag, Berlin, Heidelberg, 2003,
194 – 205.

3. Glushkov, V.M., The abstract theory of automata, Russian Math. Surveys 16
(1961) 1 – 53.

4. Hagenah, C., and Muscholl, A., Computing ε-free NFA from regular expressions in
O(n log2(n)) time, Theor. Inform. Appl. 34 (4) (2000) 257 – 277.

5. Hopcroft, J., An n log n algorithm for minimizing states in a finite automaton,
Proc. Internat. Sympos. Theory of machines and computations, Technion, Haifa,
1971, Academic Press, New York, 1971, 189–196.

124 Lucian Ilie, Gonzalo Navarro, and Sheng Yu

6. Hopcroft, J.E., and Ullman, J.D., Introduction to Automata Theory, Languages,
and Computation, Addison-Wesley, Reading, Mass., 1979.

7. Hromkovic, J., Seibert, S., and Wilke, T., Translating regular expressions into small
ε-free nondeterministic finite automata, J. Comput. System Sci. 62 (4) (2001) 565
– 588.

8. Ilie, L., and Yu, S., Algorithms for computing small NFAs, in: K. Diks, W. Rytter,
eds., Proc. of the 27th MFCS, (Warszawa, 2002), Lecture Notes in Comput. Sci.,
2420, Springer-Verlag, Berlin, Heidelberg, 2002, 328 – 340.

9. Ilie, L., and Yu, S., Reducing NFAs by invariant equivalences, Theoret. Comput.
Sci. 306 (2003) 373 – 390.

10. Jiang, T., and Ravikumar, B., Minimal NFA problems are hard, SIAM J. Comput.
22(6) (1993), 1117 – 1141.

11. Kameda, T., and Weiner, P., On the state minimization of nondeterministic finite
automata, IEEE Trans. Computers C-19(7) (1970) 617 – 627.

12. McNaughton, R., and Yamada, H., Regular expressions and state graphs for au-
tomata, IEEE Trans. on Electronic Computers 9 (1) (1960) 39 – 47.

13. Melnikov, B. F., A new algorithm of the state-minimization for the nondetermin-
istic finite automata, Korean J. Comput. Appl. Math. 6(2) (1999) 277 – 290.

14. Melnikov, B. F., Once more about the state-minimization of the nondeterministic
finite automata, Korean J. Comput. Appl. Math. 7(3) (2000) 655–662.

15. Navarro, G., NR-grep: a Fast and Flexible Pattern Matching Tool, Software Prac-
tice and Experience 31 (2001) 1265 – 1312.

16. Navarro, G., and Raffinot, M., Fast Regular Expression Search, Proc. WAE’99,
Lecture Notes Comput. Sci. 1668, Springer-Verlag, Berlin, Heidelberg, 1999, 198
– 212.

17. Navarro, G., and Raffinot, M., Compact DFA Representation for Fast Regular
Expression Search, Proc. WAE’01, Lecture Notes Comput. Sci. 2141, Springer-
Verlag, Berlin, Heidelberg, 2001, 1 – 12.

18. Navarro, G., and Raffinot, M., Flexible Pattern Matching in Strings. Practical On-
Line Search Algorithms for Texts and Biological Sequences, Cambridge University
Press, Cambridge, 2002.

19. Paige, R., and Tarjan, R.E, Three Partition Refinement Algorithms, SIAM J. Com-
put. (1987) 16(6) 973 – 989.

20. Thompson, K., Regular expression search algorithm, Comm. ACM 11 (6) (1968)
419 – 422.

21. Wu, S., and Mamber, U., Fast text searching allowing errors, Comm. ACM 35(10)
(1992) 83 – 91.

22. Yu, S., Regular Languages, in: G. Rozenberg, A. Salomaa, Handbook of Formal
Languages, Vol. I, Springer-Verlag, Berlin, 1997, 41 – 110.

Some Results on Directable Automata

Masami Ito1 and Kayoko Shikishima-Tsuji2

1 Department of Mathematics, Kyoto Sangyo University, Kyoto 603-8555, Japan
2 Tenri University, Tenri 619-0224, Japan

Abstract. In this paper, we provide some properties of classes of regular
languages consisting of directing words of directable automata and some
new results on the shortest directing words of nondeterministic directable
automata.

1 Introduction

Let X be a nonempty finite set, called an alphabet. An element of X is called a
letter. By X∗, we denote the free monoid generated by X . Let X+ = X∗ \ {ε}
where ε denotes the empty word of X∗. For the sake of simplicity, if X = {a},
then we write a+ and a∗ instead of {a}+ and {a}∗, respectively. Let L ⊆ X∗.
Then L is called a language over X . If L ⊆ X∗, then L+ denotes the set of all
concatenations of words in L and L∗ = L+ ∪{ε}. In particular, if L = {w}, then
we write w+ and w∗ instead of {w}+ and {w}∗, respectively. Let u ∈ X∗. Then
u is called a word over X . If u ∈ X∗, then |u| denotes the length of u, i.e. the
number of letters appearing in u. Notice that we also denote the cardinality of
a finite set A by |A|.

A finite automaton (in short, an automaton) A = (S,X, δ) consists of the
following data: (1) S is a nonempty finite set, called a state set. (2) X is a
nonempty finite alphabet. (3) δ is a function, called a state transition function,
of S ×X into S.

The state transition function δ can be extended to the function of S ×X∗

into S as follows: (1) δ(s, ε) = s for any s ∈ S. (2) δ(s, au) = δ(δ(s, a), u) for any
s ∈ S, a ∈ X and u ∈ X∗.

Let A = (S,X, δ) be an automaton, let s ∈ S and let u ∈ X∗. In what
follows, we will write suA instead of δ(s, u).

A finite recognizer A = (S,X, δ, s0, F) consists of the following data: (1) The
triple (S,X, δ) constitutes a finite automaton. (2) s0 ∈ S is called the initial
state. (3) F ⊆ S is called the set of final states.

Let A = (S,X, δ, s0, F) be a finite recognizer. Then the language T(A) =
{u ∈ X∗ | δ(s0, u) ∈ F} is called the language accepted by A.

Let L ⊆ X∗. Then L is said to be regular if L is accepted by a finite recognizer.

Now we define an directable automaton.

Definition 1. An automaton A = (S,X, δ) is said to be directable if the follow-
ing condition is satisfied: There exists w ∈ X∗ such that swA = twA for any
s, t ∈ S.

J. Karhumäki et al. (Eds.): Theory Is Forever (Salomaa Festschrift), LNCS 3113, pp. 125–133, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

126 Masami Ito and Kayoko Shikishima-Tsuji

In the above definition, a word w ∈ X∗ is called a directing word of A. Then
we have:

Fact Let A = (S,X, δ) be an automaton. Then A is directable if and only if for
any s, t ∈ S, there exists u ∈ X∗ such that suA = tuA.

Proposition 1. Assume that A = (S,X, δ) is a directable automata. Then the
set of directing words D(A) of A is a regular language.

Let A = (S,X, δ) be a directable automaton. By d(A), we denote the value
min{|w| | w ∈ D(A)}. Moreover, d(n) denotes the value max{d(A) | A =
(S,X, δ) is a directable automaton with n states}. In the definition of d(n),
X ranges over all finite nonempty alphabets.

In [2], Černý conjectured the following.

Conjecture 1. For any n ≥ 1, d(n) = (n− 1)2.

However, the above problem is still open and at present we have only the
following result:

Proposition 2. For any n ≥ 1, we have (n− 1)2 ≤ d(n) ≤ O(n3).

The lower bound is due to [2] and the uper bound is due to [7] and [8].

A similar problem for some classes of automata can be disscussed. For in-
stance, an automaton A = (S,X, δ) is said to be commutative if s(uv)A = s(vu)A

holds for any s ∈ S and any u, v ∈ X∗. By dcom(n), we denote the value
max{d(A) | A = (S,X, δ) is commutative and directable, and |S| = n}. In the
definition of dcom(n), X ranges over all finite nonempty alphabets. The following
result is due to [9] and [10].

Proposition 3. For any n ≥ 1, we have dcom(n) = n− 1.

2 Nondeterministic Directable Automata

A nondeterministic automaton A = (S,X, δ) consists of the following data: (1)
S,X are the same materials as in the definition of finite automata. (2) δ is a
relation such that δ(s, a) ⊆ S for any s ∈ S and any a ∈ X ∪ {ε}.

As in the case of finite automata, δ can be extended to the following relation
in a natural way, i.e. δ(s, au) =

⋃
t∈δ(s,a) δ(t, u) for any s ∈ S, any u ∈ X∗ and

any a ∈ X ∪ {ε}. In what follows, we will write suA instead of δ(s, u) as in the
case of finite automata.

Now we will deal with nondeterministic directable automata and their related
languages. For nondeterministic automata, the directability can be defined in

Some Results on Directable Automata 127

several ways. In each case, the directing words constitute a regular language.
We will consider six classes of regular languages with respect to the different
definitions of directability.

Let A = (S,X, δ) be a nondeterministic automaton. In [5], the notion of
directing words of A is given. In the definition, SwA denotes

⋃
s∈S sw

A for
w ∈ X∗.

Definition 2. (1) A word w ∈ X∗ is D1-directing word@Di-directing if swA �= ∅
for any s ∈ S and |SwA| = 1. (2) A word w ∈ X∗ is D2-directing if swA = SwA

for any s ∈ S. (3) A word w ∈ X∗ is D3-directing if
⋂
s∈S

swA �= ∅.

Definition 3. Let i = 1, 2, 3. Then A is called a Di-directable automaton if the
set of Di-directing words is not empty.

Let A = (S,X, δ) be a nondeterministic automaton. Then, for any i = 1, 2, 3,
Di(A) denotes the set of all Di-directing words. Then we have:

Proposition 4. For any i = 1, 2, 3,Di(A) is a regular language.

A nondeterministic automaton A = (s,X, δ) is said to be complete if saA �= ∅
for any s ∈ S and any a ∈ X . As for the D1-directability of a complete nondeter-
ministic automaton, Burkhard introduced it in [1]. We will investigate the classes
of languages consisting of D1-, D2- and D3-directing words of nondeterministic
automata and complete nondeterministic automata.

The classes of Di-directable nondeterministic automata and complete non-
deterministic automata are denoted by Dir(i) and CDir(i), respectively. Let X
be an alphabet. For i = 1, 2, 3, we define the following classes of languages:

(1) LX
ND(i) = {Di(A) | A = (S,X, δ) ∈ Dir(i)}. (2) LX

CND(i) = {Di(A) |
A = (S,X, δ) ∈ CDir(i)}.

Let D be the class of deterministic directable automata. For A ∈ D, D(A)
denotes the set of all directing words of A. Then we can define the class, i.e.
LX

D = {D(A) | A = (S,X, δ) ∈ D}.

Then, by Propsition 1 and Proposition 4, all the above classes are subclasses
of regular languages. Figure 1 depicts the inclusion relations among such 7
classes. In [3], the inclusion relations among more classes are provided.

We will consider the shortest directing words of nondeterministic automata.

Let i = 1, 2, 3 and let A = (S,X, δ) be a nondeterministic automaton. Then
di(A) denotes the value min{|u| | u ∈ Di(A)}. For any positive integer n ≥ 1,
di(n) denotes the value max{di(A) | A = (S,X, δ) : A ∈ Dir(i) and |S| = n}.
Moreover, cdi(n) denotes the value max{di(A) | A = (S,X, δ) : A ∈ CDir(i)
and |S| = n}. Notice that in the definitions of di(n) and cdi(n), X ranges over
all finite nonempty alphabets.

128 Masami Ito and Kayoko Shikishima-Tsuji

LX
ND(1) LX

ND(2) LX
ND(3)

LX
CND(1)

LX
ND(1) ∩ LX

ND(2) ∩ LX
ND(3)

LX
D = LX

CND(2) = LX
CND(3)

Fig. 1. Inclusion relations

In [1], Burkhard determined the value cd1(n) as follows:

Proposition 5. Let n ≥ 1. Then cd1(n) = 2n − n− 1.

For d1(n), we have the following new result.

Proposition 6. Let n ≥ 2. Then 2n − n ≤ d1(n) ≤
n∑

k=2

(
n
k

)
(2k − 1). Notice that

d1(1) = 0 and d1(2) = 3.

Proof Let n ≥ 2. First, We show that d1(n) ≤
n∑

k=2

(
n
k

)
(2k−1). Let A = (S,X, δ)

be a D1-directable automaton with n states and let w = a1a2 · · · ar ∈ D1(A) such
that ai ∈ X, i = 1, 2, . . . , r, r ≥ 1 and |w| = r = d1(A). Since w ∈ D1(A), there
exists s0 ∈ S such that swA = {s0} for any s ∈ S. For any i = 1, 2, . . . , r, we
define the set Si and Ti as follows: (1) Si = S(a1a2 · · · ai)A. (2) Ti = {t ∈ Si |
t(ai+1ai+2 · · · ar)A = {s0}}.

Let s ∈ S and let i = 1, 2, . . . , r. Since s(a1a2 · · · aiai+1 · · · ar)A = (s(a1a2 · · ·
ai)A)(ai+1 · · · ar)A = {s0}, we have s(a1a2 · · · ai)A ∩ Ti �= ∅. Let S = S0 = T0.
Consider the set {(Si, Ti) | i = 0, 1, 2, . . . , r − 1}. It is obvious that Si �= ∅ for
any i = 0, 1, . . . , r− 1. It is also obvious that |S0| �= 1. Suppose that |Si| = 1 for
some i = 1, 2, . . . , r − 1. Then Si = Ti = {t} for some t ∈ S. By the definition
of Ti, this means that a1a2 · · · ai ∈ D1(A), which contradicts the minimality
of |w|. Therefore, |Si| �= 1 for any i = 1, 2, . . . , n. Hence the set {(Si, Ti) |
i = 0, 1, 2, . . . , r − 1} does not contain any ({s}, {s}) with s0 �= s ∈ S.

Now assume that (Si, Ti) = (Sj , Tj) for some i, j = 1, 2, . . . , r−1, i < j. Then
it can be seen that a1a2 · · ·aiaj+1aj+2 · · ·ar ∈ D1(A), which contradicts the
minimality of |w|. Hence all (Si, Ti), i = 0, 1, 2, . . . , r− 1, are distinct. Therefore,

|{(Si, Ti) | i = 0, 1, 2, . . . , r− 1}| ≤
n∑

k=2

(
n
k

)
(2k− 1) and hence r ≤

n∑
k=2

(
n
k

)
(2k− 1).

We will show that 2n − n ≤ d1(n). It is obvious that d1(2) ≥ 2. Let n ≥ 3.
We will construct a D1-directable automaton A = (S,X, δ) such that |S| = n

Some Results on Directable Automata 129

and d1(A) = 2n−n. Let S be a finite set with |S| = n and let {T1, T2, . . . , Tr} =
{T ⊂ S | |T | ≥ 2}. Notice that r = 2n − n − 2. Moreover, we assume that
|T1| ≥ |T2| ≥ · · · ≥ |Tr|, {s0} = S \ T1 and Tr = {s1, s2}. Now we construct the
following nondeterministic automaton A = (S,X, δ): (1) X = {a1, a2, . . . , ar, b}.
(2) For any i = 1, 2, . . . , r − 1, saA

i = Ti+1 if s ∈ Ti and saA
i = S, otherwise. (3)

s1a
A
r = s2a

A
r = {s1} and saA

r = S if s ∈ S \ {s1, s2}. (4) s0bA = ∅ and sbA = T1

for any s ∈ S \ {s0}.
Let s ∈ S and let i = 1, 2, . . . , r. Notice that s(aiba1a2 · · · ar)A = {s1} and

hence aiba1a2 · · · ar ∈ D1(A). Moreover, since s0bA = ∅, we have bX∗∩D1(A) =
∅. Let i, j = 1, 2, . . . , r. Then S(aiaj)A = S. On the other hand, s(aib)A = T1

for any s ∈ S. This means that u ∈ aibX
∗ if u is a shortest D1-directing word

of A. Let i = 1, 2, . . . , r − 1. Then Ti(aiaj)A = Ti+1a
A
j = S if j > i + 1 and

Ti(aiaj)A = Ti+1a
A
j ⊇ Tj+1 if j ≤ i. Notice that in the latter case j + 1 ≤ i+ 1.

This implies that u is not a shortest D1-directing word of A if u ∈ X∗aiajX
∗

where j �= i+1. Moreover, since SbA = T1, u is not a shortest D1-directing word
of A if u ∈ XX+bX∗. Consequently, aiba1a2 · · · ar is a shortest D1-directing
word of A, i.e. d1(A) = r + 2 = 2n − n. Hence we have 2n − n ≤ d1(n).

Finally, we compute d1(1) and d1(2). It is obvious that d1(1) = 0. Consider
the following nondeterministic automaton A = ({1, 2}, {a, b, c}, δ): (1) 1aA =
{1, 2} and 2aA = {2}. (2) 1bA = ∅ and 2bA = {1, 2}. (3) 1cA = {1} and
2cA = ∅.

Then abc is a shortest D1-directing word of A. Since d1(2) ≤ 22 − 1 = 3, we
have d1(2) = 3.

Now we consider the value d3(n). Before dealing with the value d3(n), we
define a nondeterministic automaton of partial function type.

A nondeterministic automaton A = (S,X, δ) is said to be of partial function
type if |saA| ≤ 1 for any s ∈ S and any a ∈ X . Then we have:

Remark 1. Let A be a nondeterministic automaton of partial function type.
Then D3(A) = D1(A).

Let A = (S,X, δ) be a D3-directable automaton of partial function type.
Consider the following procedure P: Let u ∈ D3(A). Assume that u = u1u2u3

where u1, u3 ∈ X∗, u2 ∈ X+ and Su1
A = S(u1u2)A. Then procedure P can be

applied as u⇒P u1u3.

Then we have the following result.

Lemma 1. In the above procedure, we have u1u3 ∈ D3(A).

Proof Let A = (S,X, δ) be a nondeterministic automaton of partial func-
tion type. Moreover, let u = u1u2u3 where u1, u3 ∈ X∗, u2 ∈ X+ and Su1

A =
S(u1u2)A. Since u ∈ D3(A), there exists s0 ∈ S such that suA = {s0} for any

130 Masami Ito and Kayoko Shikishima-Tsuji

s ∈ S. From the assumptions that Su1
A = S(u1u2)A and A is a nondetermin-

istic automaton of partial function type, it follows that suA = s(u1u2u3)A =
s(u1u3)A = {s0} for any s ∈ S. By Remark 1, this means that u1u3 ∈ D3(A).

Let A = (S,X, δ) be a D3-directable automaton of partial function type and
let a1a2 · · · ar ∈ D3(A) such that sa1

A = ta1
A for some s, t ∈ S, s �= t.

Assume that v ∈ D3(A), v = v1v2v3, v1, v3 ∈ X∗, v2 ∈ X+, |Sv1A| =
|S(v1v2)A| and {s, t} ⊆ Sv1

A. Then procedure Q(s,t) can be applied as v ⇒Q(s,t)

v1a1a2 · · ·ar.

Then we have the following results.

Lemma 2. In the above procedure, we have v1a1a2 · · ·ar ∈ D3(A) and |Sv1A| >
|Sv1a1

A|.
Proof Let s ∈ S. Since v = v1v2v3 ∈ D3(A), we have sv1

A �= ∅, actu-
ally |sv1A| = 1. Notice that ∃sr ∈ S, ∀t ∈ S, t(a1a2 · · · ar)A = {sr}. There-
fore, s(v1a1a2 · · ·ar)A = (sv1A)(a1a2 · · ·ar)A = {sr} and hence v1a1a2 · · · ar ∈
D3(A). Since A is of partial function type and {s, t} ⊆ Sv1

A, |Sv1A| ≥ |Sv1a1
A|+

1. This completes the proof of the lemma.

Lemma 3. Let A = (S,X, δ) be a D3-directable automaton such that |S| =
n and d3(A) = d3(n). Then there exists a nondeterministic automaton B =
(S, Y, γ) of partial function type such that d3(B) = d3(n).

Proof Let u = a1a2 · · ·ar ∈ D3(A) with |u| = d3(A). Since u ∈ D3(A), there
are sr ∈ S and a sequence of partial functions of S into S, ρ1, ρ2, . . . , ρr such that
s(a1a2 · · · ai)A ⊇ ρi(ρi−1(· · · (ρ1(s)) · · ·)) for any s ∈ S and any i = 1, 2, . . . , r.
Furthermore, ρr(ρr−1(· · · (ρ1(s)) · · ·)) = {sr} for any s ∈ S. Now we define
the automaton of partial function type B = (S, Y, γ) as follows: (1) Y = {bi |
i = 1, 2, . . . , r}. Remark that b1, b2, . . . , br are distinct symbols. (2) sbiB = ρi(s)
for any s ∈ S and any i = 1, 2, . . . , r.

Then B is a nondeterministic automaton of partial function type. Moreover,
it is obvious that b1b2 · · · br ∈ D3(B). Suppose that bi1bi2 · · · bik

∈ D3(B) where
i1, i2, . . . , ik ∈ {1, 2, . . . , r}. Then we have ai1ai2 · · · aik

∈ D3(A). Therefore,
k ≥ r and r = d3(B). This completes the proof of the lemma.

We are now ready to determine an upper bound for d3(n).

Proposition 7. For any n ≥ 3, d3(n) ≤
n−1∑
k=2

(
n
k

)− n−2∑
k=0

(
n−2

k

)
+ n− 1.

Proof By Lemma 3, there exists a nondeterministic automaton of partial
function type A = (S,X, δ) such that |S| = n and d3(n) = d3(A). Let u =
a1a2 · · · ar ∈ D3(A) with r = d3(n) and let Si = S(a1a2 · · · ai)A for i =
1, 2, . . . , r. Since A is of partial function type and r = d3(n) = d3(A), |S| >
|S1| ≥ |S2| ≥ · · · ≥ |Sr−1| > |Sr| = 1. Let Sr = {sr}. By Lemma 1, S, S1, S2, . . . ,

Some Results on Directable Automata 131

Sr−1 and Sr are distinct. Moreover, since |S| > |S1|, there exist s0, s1 ∈ S such
that s0 �= s1 and s0a1

A = s1a1
A. Therefore, we can apply procedure Q(s0,s1) to

a1a2 · · · ar if necessary and we can get a1a2 · · ·ar ⇒Q(s0,s1) v1a1a2 · · ·ar. Now we
apply procedure P to v1a1a2 · · ·ar as many times as possible until we cannot ap-
ply procedure P anymore. Hence we can obtain w ∈ D3(A) with |w| ≤2|S| − |S|.
Then we apply procedure Q(s0,s1) to w. We will continue the same process un-
til we cannot apply either procedure P nor Q(s0,s1). Notice that this process
will be terminated after a finite number of applications of procedures P and
Q(s0,s1). Let w = c1c2 · · · cs, ci ∈ X, i = 1, 2, . . . , s be the last D3-directing
word of A which was obtained by the above process. Let Ti = S(c1c2 · · · ci)A

for any i = 1, 2, . . . , s. Then Ti �= Tj for any i, j = 1, 2, . . . , s with i < j
and {T1, T2, . . . , Ts} contains at most n − 2 elements Ti, i = 1, 2, . . . , s with

Ti ⊇ {s0, s1}. Since |{T ⊆ S | {s0, s1} ⊆ T }| =
n−2∑
k=0

(
n−2

k

)
and by the above ob-

servation (includig Lemma 2), we have d3(n) ≤
n−1∑
k=2

(
n
k

) − n−2∑
k=0

(
n−2

k

)
+ n − 1.

For the lower bound for d3(n), we have the following new result.

Proposition 8. Let n ≥ 3. Then d3(n) ≥ 2m+1 if n = 2m (d3(n) ≥ 3·2m−1+1
if n = 2m+ 1).

Proof Let n ≥ 3 and let S = {1, 2, . . . , n}. Moreover, let S1 = {1, 2}, let
S2 = {3, 4}, . . . , let Sm−1 = {2m − 3, 2m − 2} and let Sm = {2m − 1, 2m} if
n = 2m (Sm = {2m− 1, 2m, 2m+ 1} if n = 2m+ 1).

We define the following D3-directable automaton A = (S,X, δ):

(1) {T1, T2, . . . , Tk} = {{n1, n2, . . . , nm} | (n1, n2, . . . , nm) ∈ S1×S2×· · ·×Sm}
where k = 2m if n = 2m (k = 3 ·2m−1 if n = 2m+1). (2) T1 = {1, 3, 5, . . . , 2m−
1}. (3) X = {a, b1, b2, . . . , bk−2, bk−1, c}. (4) 1aA = 2aA = {1}, 3aA = 4aA =
{3}, . . . , (2m − 3)aA = (2m − 2)aA = {2m − 3} and (2m − 1)aA = (2m)aA =
{2m − 1} if n = 2m ((2m − 1)aA = (2m)aA = (2m + 1)aA = {2m − 1} if
n = 2m+ 1). (5) Let i = 1, 2, . . . , k − 1. By ρi, we denote a bijection of Ti onto
Ti+1. Then tbi

A = ρi(t) for any t ∈ Ti and tbi
A = ∅, otherwise. (6) tcA = {1}

for any t ∈ Tk and tcA = ∅, otherwise.

Then it can be easily verified that ab1b2 · · · bk−1c is a unique shortest D3-
directing word of A. Therefore, d3(n) ≥ 2m + 1 if n = 2m (d3(n) ≥ 3 · 2m−1 + 1
if n = 2m+ 1).

Now we consider the values cd2(n) and d2(n). The lower bound is due to [1]
and the upper bound is followed by [5].

Proposition 9. For n ≥ 2, 2n − n − 1 ≤ cd2(n) ≤ d2(n) < 1 + (2n − 2)
(
2n

2

)
.

Remark that cd2(1) = d2(1) = 0.

132 Masami Ito and Kayoko Shikishima-Tsuji

Finally, we provide a result on the value of cd3(n). The result is due to [2]
and [5].

Proposition 10. Let n ≥ 1. Then (n− 1)2 ≤ cd3(n) ≤ 1 + (n− 2)
(
n
2

)
.

3 Commutative Nondeterministic Directable Automata

In this section, we will deal with commutative nondeterministic automata and
related languages alongside the same line as that of the previous section.

A nondeterministic automaton A = (S,X, δ) is said to be commutative if
s(ab)A = s(ba)A holds for any s ∈ S and any a, b ∈ X . nondeterministic au-
tomata@commutative

By L′X
D ,L

′X
CND(i) and L′X

ND(j), i, j = 1, 2, 3, we denote the classes of reg-
ular languages of directing words of deterministic commutative automata, of
Di-directing words of complete commutative nondeterministic automata, and of
Dj-directing words of commutative nondeterministic automata, respectively.

Then we have the following inclusion relations among these classes (see
Figure 2).

L′X
ND(1) = L′X

ND(3)

L′X
D = L′X

ND(2) = L′X
CND(1) = L′X

CND(2) = L′X
CND(3)

Fig. 2. Commutative case

Now we will consider the shortest directing words of commutative nondeter-
ministic automata. The results in this section are due to [4].

Let i = 1, 2, 3 and let n ≥ 1. Then cdcom(i)(n) denotes the value max{di(A)
| A = (S,X, δ) : commutative, A ∈ CDir(i) and |S| = n}.

Notice that in the definitions of dcom(i)(n) and cdcom(i)(n), X ranges over all
finite nonempty alphabets.

Proposition 11. For any n ≥ 1, dcom(1)(n) = cdcom(1)(n) = n− 1.

Proposition 12. Let n ≥ 2. Then (n − 1)2 + 1 ≤ cdcom(2)(n) = dcom(2)(n) ≤
2n − 2. For n = 1, cdcom(2)(1) = dcom(2)(1) = 0.

Proposition 13. Let n ≥ 2. Then n2 − 3n + 3 ≤ cdcom(3)(n) = dcom(3)(n) ≤
1 + (n− 2)

(
n
2

)
. For n = 1, cdcom(3)(1) = dcom(3)(1) = 0.

Some Results on Directable Automata 133

As for more detailed information on deterministic and nondeterministic di-
rectable automata, refer to [6].

Acknowledgement The authors would like to thank Dr. Cs. Imreh for his
valuable comments.

References

1. H.V. Burkhard, Zum Längenproblem homogener experimente an determinierten
und nicht-deterministischen automaten, Elektronische Informationsverarbeitung
und Kybernetik, EIK 12 (1976), 301-306.

2. J. Černý, Poznámka k homogénym experimentom s konečinými automatami,
Matematicko-fysikalny Časopis SAV 14 (1964), 208-215.

3. B. Imreh and M. Ito, On some special classes of regular languages, in Jewels are
Forever (edited by J. Karhumäki et al.) (1999) (Springer, New York), 25-34.

4. B. Imreh, M. Ito and M. Steinby, On commutative directable nondeterministic au-
tomata, in Grammars and Automata for Strings: From Mathematics and Computer
Science to Biology, and Back (edited by C. Martin-Vide et al.) (2003) (Taylor and
Francis, London), 141-150.

5. B. Imreh and M. Steinby, Directable nondeterministic automata, Acta Cybernetica
14 (1999), 105-115.

6. M. Ito, Algebraic Theory of Automata and Languages, World Scientific (Singapore),
2004.

7. J.-E. Pin, Sur les mots synchronisants dans un automata fini, Elektronische Infor-
mationsverarbeitung und Kybernetik, EIK 14 (1978), 297-303.

8. J.-E. Pin, Sur un cas particulier de la conjecture de Cerny, Automata, Lecture
Notes in Computer Science 62 (Springer) (1979), 345-352.

9. I. Rystsov, Exact linear bound for the length of reset words in commutative au-
tomata, Publicationes Mathematicae of Debrecen 48 (1996), 405-409.

10. I. Rystsov, Reset words for commutative and solvable automata, Theoretical Com-
puter Science 172 (1997), 273-279

Rectangles and Squares Recognized by

Two-Dimensional Automata

Jarkko Kari� and Cristopher Moore

1 Mathematics Department, FIN-20014 University of Turku, Finland, and
Department of Computer Science, University of Iowa, Iowa City IA 52242 USA

jjkari@cs.uiowa.edu
2 Computer Science Department and Department of Physics and Astronomy,

University of New Mexico, Albuquerque NM 87131, and the Santa Fe Institute,
1399 Hyde Park Road, Santa Fe NM 87501,

moore@cs.unm.edu

Abstract. We consider sets of rectangles and squares recognized by de-
terministic and non-deterministic two-dimensional finite-state automata.
We show that sets of squares recognized by DFAs from the inside can
be as sparse as any recursively enumerable set. We also show that NFAs
can only recognize sets of rectangles from the outside that correspond to
simple regular languages.

1 Introduction

Two-dimensional languages, or picture languages, are an interesting generaliza-
tion of the standard languages of computer science. Rather than one-dimensional
strings, we consider two-dimensional arrays of symbols over a finite alphabet.
These arrays can then be accepted or rejected by various types of automata,
and this gives rise to different language classes. Such classes may be of interest
as formal models of image recognition, or simply as mathematical objects in
their own right.

Much of this work has focused on two- or more-dimensional generalizations
of regular languages. We can define the regular languages as those recognized by
finite-state automata that can move in one direction or both directions on the
input, and which are deterministic or non-deterministic. We can also consider
finite complement languages, in which some finite set of subwords is forbidden,
and then project onto a smaller alphabet with some alphabetic homomorphism.
In one dimension, these are all equivalent in their computational power.

In two dimensions, we can consider 4-way finite-state automata, which at
each step can read a symbol of the array, change their internal state, and move
up, down, left or right to a neighboring symbol. These can be deterministic or
non-deterministic, and DFAs and NFAs of this kind were introduced by Blum
and Hewitt [1]. Similarly, we can forbid a finite number of subblocks and then
project onto a smaller alphabet, obtaining a class of picture languages which
� Research supported by NSF Grant CCR 97-33101

J. Karhumäki et al. (Eds.): Theory Is Forever (Salomaa Festschrift), LNCS 3113, pp. 134–144, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Rectangles and Squares Recognized by Two-Dimensional Automata 135

we call homomorphisms of local lattice languages, or h(LLL)s [9]. (These are
also called the recognizable languages [3] or the languages recognizable by non-
deterministic on-line tesselation acceptors [5].) While DFAs, NFAs and h(LLL)s
are equivalent in one dimension, in two or more they become distinct:

DFA ⊂ NFA ⊂ h(LLL)

where these inclusions are strict. Reviews of these classes are given in [9, 4, 7,
12], and a bibliography of papers in the subject is maintained by Borchert at [2].

A fair amount is known about the closure properties of these classes as well.
The DFA, NFA, and h(LLL) languages are all closed under intersection and
union using straightforward constructions.

The situation for complement is somewhat more complicated. DFAs are
closed under complement by an argument of Sipser [13] which allows us to re-
move the danger that a DFA might loop forever and never halt. We construct a
new DFA that starts in the final halt state, which we can assume without loss
of generality is in the lower right-hand corner. Then this DFA does a depth-first
search backwards, attempting to reach the initial state of the original DFA. (We
use a similar construction in Section 2 below.) This gives a loop-free DFA which
accepts if and only if the original DFA accepts, and since a loop-free DFA al-
ways halts, we can then switch accepting and rejecting states to recognize the
complement of the original language.

It is also known that h(LLL)s are not closed under complement, and in [8]
we proved that NFAs are not closed under complement either. In the process, we
proved in [8] also that NFAs are more powerful than DFAs, even for rectangles of
a single symbol. We note that recognition of rectangles by NFAs, in the context of
“recognizable functions,” is studied in [6], where some upper bounds are shown.

In this paper we consider recognizing picture languages over a single letter
alphabet, that is, recognizing squares and rectangles. We start by investigat-
ing sets of squares recognized by DFAs, and we show that DFAs can recognize
squares whose sizes belong to sets which are as sparse as any recursively enu-
merable set. This resolves an open question raised in [9] about how sparse these
sets can be.

We then consider the question of what sets of rectangles can be recognized by
an NFA or DFA from the outside, i.e. by an automaton which is not allowed to
enter the rectangle but can roam the plane outside it. We show that any such set
corresponds to a simple regular language, and therefore that such an automaton
can be simulated by a DFA moving along the rectangle’s boundary.

2 Square Recognition

Our model of four-way finite automaton is sensitive to the borders of the input
rectangle. In other words, the automaton knows which of the neighboring squares
are inside and which are outside of the rectangle. Based on this information and
the current state of the automaton the transition rule specifies the new state
of the automaton and the direction Left, Right, Up or Down of movement. The

136 Jarkko Kari and Cristopher Moore

automaton is not allowed to move in a direction that takes the automaton to
the other side of the border.

In this section we consider the recognition problem from the inside of the
rectangle. In this case the automaton is initially located inside the rectangle, at
the lower left corner. The rectangle is accepted if and only if the automaton is
able to eventually reach its accepting state. A DFA has a deterministic transition
rule, while in NFA there may be several choices of the next move. The automaton
recognizes set S ⊂ N

2 where

S = {(w, h) | the automaton accepts the rectangle of size w × h }.

A DFA can easily check if a given rectangle is a square by moving diagonally
through the rectangle. Since the class of sets recognized by DFAs or NFAs are
closed under intersection, the set of squares recognized by a DFA or NFA is
recognizable by an automaton of the same type. A natural question to ask is
what sets of squares can be recognized by NFA or DFA. We say that a set S ⊂ N

is square-recognizable by an NFA (DFA) if the set of squares {(n, n) |n ∈ S} is
recognizable by an NFA (DFA).

Example 1. [9] The set {2n |n ∈ N} is square-recognized by a DFA that uses
knight’s moves to divide the distance to a corner by two, as in Figure 1.

Fig. 1. Using knight’s moves to recognize 2n × 2n squares

Example 2. A slightly more complex construction shows that the set {22n |n ∈
N} can be square-recognized. In this construction a signal of rational speed 3/4
is repeatedly used to move the automaton from position 4n into position 3n, in
the same style as the knight moves was used in the previous example. That is, we
multiply the automaton’s position on an edge by 3/4 until the result is no longer
an integer. Then signals of speed 2/3 are iterated to move the automaton from

Rectangles and Squares Recognized by Two-Dimensional Automata 137

position 3n into position 2n. This process accomplishes the following changes in
the automaton’s position:

22n

= 42n−1 −→ 32n−1 −→ 22n−1
.

The process is iterated until position 2 = 220
is reached, in which case the square

is accepted. If it ends at position 1 instead, we reject. Note that we can check
the position mod 2, 3, or 4 at any time by using a finite number of states. At
the very beginning we can verify that the square size is a power of 2, using the
DFA from our first example.

We see from these examples that rather “sparse” sets of squares can be
recognized, even by deterministic finite automata. In what follows we prove that
these sets can be made as sparse as any recursive (or recursively enumerable)
set. This result is optimal because any square-recognized set has to be recursive.

Theorem 1. Let {a1, a2, . . .} be any recursively enumerable set of positive in-
tegers. There exists a 2D DFA that square-recognizes a set {b1, b2, . . .} such that
bi > ai for all i = 1, 2, . . .

Proof. We exploit classical results by Minsky [11] and a very natural correspon-
dence between automata inside rectangles and 2-counter machines without an
input tape. A 2-counter machine without an input tape consists of a determinis-
tic finite state automaton and two infinite registers, called counters. The counters
store one non-negative integer each. The machine can detect when either counter
is zero. It changes its state according to a deterministic transition rule. The new
state only depends on the old state and the zero vs. non-zero status of the two
counters. The transition rule also specifies how to change the counters: They may
be incremented, decremented (only if they are non-zero) or kept unchanged. The
automaton accepts iff it reaches a specified accepting state. We define the set
recognized by such a device as the set of integers k such that the machine enters
the accepting state when started with counter values 0 and k.

It follows from Minsky’s construction in [11] that for every recursively enu-
merable setX of positive integers there exists a 2-counter machine A that accepts
the set

Y = {2n |n ∈ X}.
Moreover, we may assume that the 2-counter machine A never loops, i.e., never
returns back to the same state and counter values it had before. This assumption
means no loss of generality because we can start Minsky’s construction from
a Turing machine that does not loop. Such Turing machine exists for every
recursively enumerable set. (It may, for example, count on the tape the number
of instructions it executes.)

Notice that a 2-counter machine can be interpreted as a 2D DFA that op-
erates on the (infinite) positive quadrant {(x, y) |x, y ≥ 0} of the plane and
has the same finite states as the 2-counter machine. The values of the coun-
ters correspond to the coordinates of the position of the automaton. Increments

138 Jarkko Kari and Cristopher Moore

and decrements of the counters correspond to movements of the DFA on the
plane. Counter values zero are the positive axeses (x, 0) and (0, y), which can be
detected by the DFA.

An accepting computation of a 2-counter machine can therefore be simulated
by a 2D DFA inside a sufficiently large square. The square has to be at least as
large as the largest counter value used during the accepting computation. Using
this observation we prove that if Y is any set of positive integers accepted by a
2-counter machine A that does not loop then some 2D DFA square-recognizes
the set

Z = {k ∈ N | k is the largest counter value during the accepting
computation by A of some i ∈ Y }.

It is very easy to construct a non-deterministic 2D automaton that square-
recognizes set Z: The NFA moves along the lower edge of the square and uses
the non-determinism to guess the starting position of the 2-counter machine A.
Then it executes A until A accepts, halts otherwise or tries to move outside the
square. Moreover, the NFA memorizes in the finite control unit if it ever touched
the right or upper edge of the square, indicating that a counter value equal to
the size of the square was used. The square is accepted if and only if A accepts
after touching the right or the upper edge of the square. Note that the forward
simulation part of this process is deterministic. Non-determinism is only needed
to find the correct input to the 2-counter machine.

To accept set Z deterministically we use the determinism of the 2-counter
machine to depth-first-search the predecessor tree of a given configuration C to
see if it is on a computation path for some valid input. This is done by trying
all possible predecessors of a configuration in a predetermined order, and recur-
sively processing all these predecessors. When no predecessors exist the DFA
can backtrack using the determinism of the 2-counter machine, and continue
with the next branch of the predecessor tree. Note that the predecessor tree
– restricted inside a square – is finite and does not contain any loops so the
depth-first-search process will eventually terminate. It finds a valid starting con-
figuration that leads to the given configuration C if it exists. If no valid input
configuration exists the process may identify an incorrect starting configuration
if the depth-first-search backtracked beyond C. In any case, if a potential start
configuration is found, a forward simulation of the 2-counter machine is done to
see if it accepts after touching the right or the upper edge of the square.

The depth-first-search process described above is done on all configurations
C that are close to the upper left or the lower right corners of the input square.
If the two counter machine A has s states then any accepting computation with
maximum counter value k must enter some cell within distance s of one of the
corners: otherwise counter value k is present in a loop that takes the automaton
away from the axeses, and the computation cannot be accepting.

There are a finite number of configurations C within distance s from the
corners, so the 2D DFA can easily try all of them one after the other.

Now we are ready to conclude the proof. If X = {a1, a2, . . .} is any r.e. set
of positive integers then there exists a 2-counter machine A that does not loop

Rectangles and Squares Recognized by Two-Dimensional Automata 139

and accepts Y = {2a1 , 2a2 , . . .}. The construction above provides a 2D DFA that
square accepts the set Z = {b1, b2, . . .} where bi is the maximum counter value
during the accepting computation of 2ai by A. Clearly bi ≥ 2ai > ai.

Another way of stating the previous theorem is

Corollary 1. Let f : N −→ N be any computable function. Then some 2D DFA
square accepts the range of some function g : N −→ N that satisfies g(n) ≥ f(n)
for all n ∈ N.

It is interesting to note that there seem to be no tools whatsoever, at the
present time, to prove that a set S cannot be square-recognized by a DFA. To
inspire the creation of such tools, we make the following conjecture:

Conjecture 1. No DFA or NFA in two dimensions can recognize the set of squares
of prime size.

In contrast, the reader can easily show that there is a two-dimensional DFA
that recognizes squares of size 11p for p prime. This works by first moving p from
the 11-register to the 2-register, that is, by converting 11p to 2p as in Example 2
above. It then copies p into to the 3-register, and uses the 5- and 7-registers to
maintain a number m by which it divides p, with a loop that passes m back and
forth between the 5- and 7-registers while decrementing the 3-register. After each
division, it increments m and recopies p from the 2-register to the 3-register. We
halt if m exceeds 'p/4(, which we can check with a similar loop; this suffices for
all p > 9. Then since 2p3p7p/4 ≤ 11p all this can take place inside a square of
size 11p.

In addition, in [9] DFAs are given that recognize cubes of prime size, and
tesseracts of perfect size, in three and four dimensions respectively. These use a
billiard-ball-like computation to check whether two integers are mutually prime;
thus they simulate counter machines which branch both when the counter is zero
and when it reaches its maximum, i.e. the size of the cube.

We also conjecture the following:

Conjecture 2. NFAs are more powerful than DFAs on squares of one symbol.

Since we have proved in [8] that NFAs are more powerful than DFAs on rectangles
of one symbol, it would be rather strange if they were equivalent on squares.

3 Recognizing Rectangles from Outside

Let us consider next the “dual” problem of recognizing rectangles using a finite
automaton that operates outside the rectangle and is not allowed to penetrate
inside. Initially the automaton is located outside one of the corners of the rectan-
gle, and the rectangle is accepted if the automaton is able to reach its accepting
state. Not surprisingly, such devices turn out to be less powerful than automata
that operate inside rectangles. We prove that if S ⊆ N

2 is the set of rectangles
recognized by an NFA from outside, then the language

LS = {0i1j | (i, j) ∈ S}

140 Jarkko Kari and Cristopher Moore

is regular. In other words, the same set of rectangles can be recognized by a DFA
that moves east and south along the edges of the rectangle from the upper left
corner to the lower right corner. A similar result was shown for DFAs which are
allowed to make excursions into the plane outside the rectangle by Milgram [10].

Lemma 1. Let S ⊆ N2 be recognized from the outside by an NFA A. Then there
exist positive integers tH and pH, called the horizontal transient and the period,
respectively, such that for every w > tH and every h

(w, h) ∈ S =⇒ (w + pH , h) ∈ S

where the numbers tH and pH are independent of the height h.

Proof. We generalize an argument from [9] for rectangles of height 1. Consider
first computation paths P by A on unmarked plane that start in state q at
position (0, 0) and end in state r on the same row y = 0. Assume that P is
entirely above that row, i.e. all intermediate positions (x, y) of P have y > 0.
Let us prove the following fact: there must exist positive integers t and p such
that, if P ends in position (x, 0) with x > t then there is a computation path
P ′ from the same initial position (0, 0) and state q, into position (x + p, 0) and
state r, such that also P ′ is entirely above the row y = 0. In other words, the
possible horizontal positions where A returns to the initial row y = 0 in state r
are eventually periodic.

To prove this, notice that sequences I of instructions executed by A during
possible P ’s form a context-free language, accepted by a pushdown automaton
that uses its stack to count its vertical position and its finite state control to
simulate the states of A. Recall that a Parikh vector of a word is the integer
vector whose elements are the counts of different letters in the word. It is well
known that in the case of a context-free language the Parikh vectors of the
words in the language form a semi-linear set, that is, a finite union of linear sets
{u+

∑k
i=0 aivi | ai = 0, 1, . . .} for integer vectors u and vi, i = 0, 1, . . . , k.

Any linear transformation keeps linear sets linear; therefore, the possible
values of nr(I)− nl(I) form a semilinear set of integers, where nr(I) and nl(I)
indicate the numbers of right- and left-moving instructions in the word I, respec-
tively. Because nr(I)− nl(I) is the total horizontal motion caused by executing
I, we conclude that possible horizontal positions at the end of P form a semi-
linear set ∪j{tj + ipj | i = 0, 1, . . .}. By choosing t to be the maximum of all the
tj ’s and p as the lowest common multiple of the positive pj’s, we obtain numbers
that satisfy the following claim: if x > t is the horizontal position at the end of
some P , then x = tj + ipj for some numbers i ≥ 1 and j with pj > 0. Because
pj divides p we see that x+ p is in the same linear set {tj + ipj | i = 0, 1, . . .} as
x is.

As proved above, the transients t and the periods p exist for all start states
q and end states r. We can find a common transient and period for all start and
end states by taking the lowest common multiple of the periods p and the largest
of the transients t.

Rectangles and Squares Recognized by Two-Dimensional Automata 141

L R

D

U

Fig. 2. Four parts of the plane

Now we are ready to proceed with the proof of the Lemma. Let us divide the
plane outside a rectangle into four parts as indicated in Figure 2. Parts L and R
are semi-infinite strips to the left and to the right of the rectangle. Consider an
accepting computation C for a w×h rectangle and let us divide C into segments
at the transitions between the four parts. More precisely, a segment will be a part
of C that is entirely inside one of the four regions, and the automaton touches
the border between two regions only at the beginning and end of each segment.

If the width w of the rectangle is increased, all segments of C can be executed
unchanged except segments that take the automaton from L to R or from R to
L through areas U or D.

Let us study a segment that takes the automaton from L to R through U .
Let us divide it into subsegments that start and end on the same row as the
beginning and end of the entire segment, so that inside the subsegments all
positions are strictly above that row. See the illustration in Figure 3. Notice
that the subsegments start and end in positions that touch the upper edge of
the rectangle. The only exceptions are the start and end positions of the first
and last subsegment, which lie above L and R respectively.

Fig. 3. A sample segment under consideration

142 Jarkko Kari and Cristopher Moore

If any of the subsegments moves the automaton more than t cells to the right
where t is the number from the first part of the proof, then according to the first
part that subsegment can be replaced by another one that moves the automaton
k · p additional cells to the right, for any k = 1, 2, This allows us to ‘pump’
this segment of the computation farther to the right.

If, on the other hand, every subsegment moves A either to the left or at
most t cells to the right, we can still pump the segment farther right as follows.
Let s be the number of states in A. If the width w of the rectangle is at least
(s + 1)t then the automaton must touch the upper edge of the rectangle at an
increasing series of times at positions x1 < x2 < x3 < · · · < xs+1, all satisfying
xi+1 − xi ≤ t. It follows from the pigeonhole principle that the automaton must
be in the same state when it touches the rectangle in two different positions
xi and xj for some i < j. The computation path between positions xi and xj

can be repeated arbitrarily many times, leading to an additional movement by
k · (xj − xi) cells to the right, for any chosen k = 1, 2, Because xj − xi ≤ st
we conclude that an additional movement to the right by any multiple of (st)!
cells is possible.

From the two cases above it follows that if the width of the rectangle is at
least (s+ 1)t then path P can be modified to cross an additional distance of the
lowest common multiple of (st)! and p. Therefore, the width of the rectangle can
be increased by lcm(p, (st)!).

A similar argument can be made for segments that cross from R to L, or
between R and L through the lower half D. By taking the maximum of the tran-
sient lengths and the lowest common multiple of the periods we obtain numbers
tH and pH that satisfy the lemma. The numbers are independent of the height
of the rectangle.

The previous lemma has, naturally, a vertical counterpart:

Lemma 2. Let S ⊆ N2 be recognized from outside by an NFA A. Then there
exist positive integers tV and pV such that for every h > tV and every w

(w, h) ∈ S =⇒ (w, h + pV) ∈ S
where the numbers tV and pV are independent of the width w.

Finally, we use the following technical result:

Lemma 3. Assume that a language L ⊆ 0∗1∗ satisfies the following monotonic-
ity conditions: there exist positive integers n and m such that

0i1j ∈ L, i ≥ n =⇒ (∀x ≥ i) 0x1j ∈ L, and
0i1j ∈ L, j ≥ m =⇒ (∀y ≥ j) 0i1y ∈ L.

Then L is regular.

Proof. For every fixed k the language

Ak = L ∩ 0k1∗

Rectangles and Squares Recognized by Two-Dimensional Automata 143

is regular: if for some j ≥ m we have 0k1j ∈ L, then Ak is the union of 0k1j1∗

and a finite number of words that are shorter than 0k1j. If no such j exists then
Ak is finite and therefore regular. Analogously, languages

Bk = L ∩ 0∗1k

are regular.
If L contains some word 0i1j with i ≥ n and j ≥ m then

L = A0 ∪A1 ∪ · · · ∪Ai−1

∪B0 ∪B1 ∪ · · · ∪Bj−1

∪0i0∗1j1∗

is regular since it is a finite union of regular languages. If no such word 0i1j is
in L then

L = A0 ∪A1 ∪ · · · ∪An−1

∪B0 ∪B1 ∪ · · · ∪Bm−1

is a union of a finite number of sets of the form Ak and Bk, and is therefore
regular.

Now we have all the necessary tools to prove the main result of the section:

Theorem 2. Suppose an NFA recognizes from outside a set S ⊆ N2 of rectan-
gles. Then the language

LS = {0i1j | (i, j) ∈ S}
is regular.

Proof. Let tH and pH be the horizontal transient and the period from Lemma 1,
and let tV and pV be their vertical counterparts from Lemma 2. For every a =
0, 1, . . . , pH − 1 and b = 0, 1, . . . , pV − 1 let us define

La,b = LS ∩ {0i1j | i ≡ a (mod pH), j ≡ b (mod pV)}.
Because LS is the union of languages La,b it is enough to prove that every La,b

is regular.
But it follows from Lemmas 1 and 2 that the language

L′
a,b = {0(i−a)/pH 1(j−b)/pV | 0i1j ∈ La,b}

satisfies the monotonicity condition of Lemma 3 and is therefore regular. If h is
the homomorphism that replaces 0 with pH 0’s and 1 with pV 1’s then

La,b = 0ah(L′
a,b)1

b.

Thus La,b is regular.

Acknowledgments. JK thanks the Santa Fe Institute for an enjoyable visit
where this work began. We also thank Bernd Borchert and Juraj Hromkovič for
helpful conversations.

144 Jarkko Kari and Cristopher Moore

References

1. M. Blum and C. Hewitt (1967), Automata on a 2-dimensional tape. 8th IEEE
Symp. on Switching and Automata Theory 155–160.

2. B. Borchert, http://math.uni-heidelberg.de/logic/bb/2dpapers.html
3. D. Giammarresi and A. Restivo (1992) Recognizable picture languages. Int. J. of

Pattern Recognition and Artificial Intelligence 6(2-3) 241-256.
4. D. Giammarresi and A. Restivo (1996) Two-dimensional languages. In G. Rosen-

berg and A. Salomaa, Eds., Handbook of Formal Languages, Volume III, pp. 215–
267. Springer-Verlag.

5. K. Inoue and A. Nakamura (1977) Some properties of two-dimensional on-line
tesselation acceptors. Information Sciences 13 95–121.

6. K. Inoue and A. Nakamura (1979) Two-dimensional finite automata and unaccept-
able functions. Int. J. Comput. Math. A 7 207–213.

7. K. Inoue and I. Takanami (1991) A survey of two-dimensional automata theory.
Information Sciences 55 99–121.

8. J. Kari and C. Moore (2001) New results on alternating and non-deterministic
two-dimensional finite automata. ”Proceedings of STACS’2001, 18th Annual Sym-
posium on Theoretical Aspects of Computer Science”. Lecture Notes in computer
Science 2010, 396–406, Springer-Verlag.

9. K. Lindgren, C. Moore and M.G. Nordahl (1998) Complexity of two-dimensional
patterns. Journal of Statistical Physics 91 909–951.

10. D.L. Milgram (1976) A region crossing problem for array-bounded automata. In-
formation and Control 31 147–152.

11. M. Minsky (1967) Computation: Finite and Infinite Machines. Prentice-Hall.
12. A. Rosenfeld (1979) Picture Languages: Formal Models for Picture Recognition.

Academic Press.
13. M. Sipser (1980) Halting space-bounded computations. Theoretical Computer Sci-

ence 10 335-338.

Substitution on Trajectories

Lila Kari1, Stavros Konstantinidis2, and Petr Sośık1,3

1 Department of Computer Science, The University of Western Ontario, London,
ON, Canada, N6A 5B7

{lila,sosik}@csd.uwo.ca
2 Dept. of Mathematics and Computing Science, Saint Mary’s University, Halifax,

Nova Scotia, B3H 3C3 Canada
s.konstantinidis@stmarys.ca

3 Institute of Computer Science, Silesian University, Opava, Czech Republic

Abstract. The word substitutions are binary word operations which
can be basically interpreted as a deletion followed by insertion, with some
restrictions applied. Besides being itself an interesting topic in formal
language theory, they have been naturally applied to modelling noisy
channels. We introduce the concept of substitution on trajectories which
generalizes a class of substitution operations. Within this framework, we
study their closure properties and decision questions related to language
equations. We also discuss applications of substitution on trajectories in
modelling complex channels and a cryptanalysis problem.

1 Introduction

There are two basic forms of the word substitution operation. The substitution
in α by β means to substitute certain letters of the word α by the letters of β.
The substitution in α of β means to substitute the letters of β within α by other
letters, provided that β is scattered within α. In both cases the overall length of
α is not changed. Also, we assume that a letter must not be substituted by the
same letter.

These two operations are closely related and, indeed, we prove in Section 4
that they are mutual left inverses. Their motivation comes from coding theory
where they have been used to model certain noisy channels [8]. The natural idea
is to assume that during a transfer through a noisy channel, some letters of the
transferred word can de distorted — replaced by different letters. This can be
modelled by a substitution operation extended to sets of words. This approach
also allows one to take into account that certain substitutions are more likely
than others. Hence the algebraic, closure and other properties of the substitution
operation are of interest, to study how a set of messages (=language) can change
when transferred through a noisy channel.

In this paper we generalize the idea of substitution using the syntactical
constraints — trajectories. The shuffle on trajectories as a generalization of se-
quential insertion has been studied since 1996 [16, 17]. Recently also its inverse
— the deletion on trajectories has been introduced [1, 10]. A trajectory acts as a

J. Karhumäki et al. (Eds.): Theory Is Forever (Salomaa Festschrift), LNCS 3113, pp. 145–158, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

146 Lila Kari, Stavros Konstantinidis, and Petr Sośık

syntactical condition, restricting the positions of letters within the word where
an operation places its effect. Hence the shuffle and deletion on trajectories can
be understood as meta-operations, defining a whole class of insertion/deletion
operations due to the set of trajectories at hand. This idea turned out to be
fruitful, with several interesting consequences and applications [1–4, 11, 14, 15].

We give a basic description of these operations in Section 3. Then in Section
4 we introduce on a similar basis the substitution and difference on trajectories.
From the point of view of noisy channels, the application of trajectories allows
one to restrict positions of errors within words, their frequency etc. We then
study the closure properties of substitution on trajectories in Section 5 and basic
decision questions connected with them in Section 6. In Section 7 we discuss a
few applications of the substitution on trajectories in modelling complex noisy
channels and a cryptanalysis problem. In the former case, the channels involved
permit only substitution errors. This restriction allows us to improve the time
complexity of the problem of whether a given regular language is error-detecting
with respect to a given channel [13].

2 Definitions

An alphabet is a finite and nonempty set of symbols. In the sequel we shall use
a fixed alphabet Σ. Σ is assumed to be non-singleton, if not stated otherwise.
The set of all words (over Σ) is denoted by Σ∗. This set includes the empty
word λ. The length of a word w is denoted by |w|. |w|x denotes the number of
occurrences of x within u, for w, x ∈ Σ∗.

For a nonnegative integer n and a word w, we use wn to denote the word that
consists of n concatenated copies of w. The Hamming distance H(u, v) between
two words u and v of the same length is the number of corresponding positions
in which u and v differ. For example, H(abba, aaaa) = 2.

A language L is a set of words, or equivalently a subset of Σ∗. A language
is said to be λ-free if it does not contain the empty word. For a language L, we
write Lλ to denote L ∪ {λ}. If n is a nonnegative integer, we write Ln for the
language consisting of all words of the form w1 · · ·wn such that each wi is in L.
We also write L∗ for the language L0 ∪ L1 ∪ L2 ∪ · · · and L+ for the language
L∗ − {λ}. The notation Lc represents the complement of the language L, that
is, Lc = Σ∗ − L. For the classes of regular, context-free, and context sensitive
languages, we use the notations REG, CF and CS, respectively.

A nondeterministic finite automaton with λ productions (or transitions), a
λ-NFA for short, is a quintuple A = (S,Σ, s0, F, P) such that S is the finite and
nonempty set of states, s0 is the start state, F is the set of final states, and P is
the set of productions of the form sx→ t, where s and t are states in S, and x is
either a symbol in Σ or the empty word. If there is no production with x = λ, the
automaton is called an NFA. If for every two productions of the form sx1 → t1
and sx2 → t2 of an NFA we have that x1 �= x2 then the automaton is called a
DFA (deterministic finite automaton). The language accepted by the automaton
A is denoted by L(A). The size |A| of the automaton A is the number |S|+ |P |.

Substitution on Trajectories 147

A finite transducer (in standard form) is a sextuple T = (S,Σ,Σ′, s0, F, P)
such that Σ′ is the output alphabet, the components S, s0, F are as in the case
of λ-NFAs, and the set P consists of productions of the form sx → yt where s
and t are states in S, x ∈ Σ ∪ {λ} and y ∈ Σ′ ∪ {λ}. If x is nonempty for every
production then the transducer is called a gsm (generalized sequential machine).
If, in addition, y is nonempty for every production then the transducer is called
a λ-free gsm. The relation realized by the transducer T is denoted by R(T). The
size |T | of the transducer T (in standard form) is |S|+ |P |. We refer the reader
to [18] for further details on automata and formal languages.

A binary word operation is a mapping ♦ : Σ∗×Σ∗ → 2Σ∗
, where 2Σ∗

is the set
of all subsets of Σ∗. The characteristic relation of ♦ is

C♦ = {(w, u, v) : w ∈ u♦ v}.
For any languages X and Y , we define

X ♦Y =
⋃

u∈X,v∈Y

u♦ v. (1)

It should be noted that every subsetB ofΣ∗×Σ∗×Σ∗ defines a unique binary
word operation whose characteristic relation is exactly B. For an operation ♦
we define its left inverse ♦l as

w ∈ (x♦ v) iff x ∈ (w♦l v), for all v, x, w ∈ Σ∗,

and the right inverse ♦r of ♦ as

w ∈ (u♦ y) iff y ∈ (u♦r w), for all u, y, w ∈ Σ∗.

Moreover, the word operation ♦′ defined by u♦′ v = v♦ u is called reversed ♦.
It should be clear that, for every binary operation ♦, the triple (w, u, v) is in C♦
if and only if (u,w, v) is in C♦l if and only if (v, u, w) is in C♦r if and only if
(w, v, u) is in C♦′ . If x and y are symbols in {l, r,′ }, the notation ♦xy represents
the operation (♦x)y. Using the above observations, one can establish identities
between operations of the form ♦xy.

Lemma 1. (i) ♦ll = ♦rr = ♦′′ = ♦,
(ii) ♦′l = ♦r′ = ♦lr,
(iii) ♦′r = ♦l′ = ♦rl .

Bellow we list several binary word operations together with their left and right
inverses [6, 7].

Catenation: 4 u · v = {uv}, with ·l = −→rq and ·r = −→lq.
Left quotient: u −→lq v = {w} if u = vw, with −→l

lq = ·′ and −→r
lq = ·.

Right quotient: u −→rq v = {w} if u = wv, with −→l
rq = · and −→r

rq = −→′
lq.

Shuffle (or scattered insertion): u�� v = {u1v1 · · ·ukvkuk+1 | k ≥ 1,
u = u1 · · ·ukuk+1, v = v1 · · · vk}, with ��l = � and ��r = �′.

Scattered deletion: u � v = {u1 · · ·ukuk+1 | k ≥ 1, u = u1v1 · · ·ukvkuk+1, v =
v1 · · · vk}, with �l = �� and �r = �.

4 We shall also write uv for u · v.

148 Lila Kari, Stavros Konstantinidis, and Petr Sośık

3 Shuffle and Deletion on Trajectories

The above insertion and deletion operations can be naturally generalized using
the concept of trajectories. A trajectory defines an order in which the operation
is applied to the letters of its arguments. Notice that this restriction is purely
syntactical, as the content of the arguments has no influence on this order.
Formally, a trajectory is a string over the trajectory alphabet V = {0, 1}. The
following definitions are due to [1, 16, 10].

Let Σ be an alphabet and let t be a trajectory, t ∈ V ∗. Let α, β be two words
over Σ.

Definition 1. The shuffle of α with β on the trajectory t, denoted by α��t β,
is defined as follows:

α��t β = {α1β1 . . . αkβk |α=α1 . . . αk, β=β1 . . . βk, t=0i11j1 . . . 0ik1jk , where
|αm| = im and |βm| = jm for all m, 1 ≤ m ≤ k}.

Definition 2. The deletion of β from α on trajectory t is the following binary
word operation:

α �t β = {α1 . . . αk |α=α1β1 . . . αkβk, β=β1 . . . βk, t=0i11j1 . . . 0ik1jk , where
|αm| = im and |βm| = jm for all m, 1 ≤ m ≤ k}.

Observe that due to the above definition, if |α| �= |t| or |β| �= |t|1, then α �t

β = ∅.
A set of trajectories is any set T ⊆ V ∗. We extend the shuffle and deletion

to sets of trajectories as follows:

α��T β =
⋃
t∈T

α��t β, α �T β =
⋃
t∈T

α �t β. (2)

The operations ��T and �T generalize to languages due to (1).

Example 1. The following binary word operations can be expressed via shuffle
on trajectories using certain sets of trajectories.

1. Let T = 0∗1∗, then ��T = ·, the catenation operation, and �T = −→rq,
the right quotient.

2. For T = 1∗0∗ we have ��T = ·′, the anti-catenation, and �T = −→lq, the
left quotient.

3. Let T = {0, 1}∗, then �T = ��, the shuffle, and �T = �, the scattered
deletion.

We refer to [1, 16, 10] for further elementary results concerning shuffle and dele-
tion on trajectories.

Substitution on Trajectories 149

4 Substitution on Trajectories

Based on the previously studied concepts of the insertion and deletion on tra-
jectories, we consider a generalization of three natural binary word operations
which are used to model certain noisy channels [8]. Generally, channel [13] is a
binary relation γ ⊆ Σ∗×Σ∗ such that (u, u) is in γ for every word u in the input
domain of γ – this domain is the set {u | (u, v) ∈ γ for some word v}. The fact
that (u, v) is in γ means that the word v can be received from u via the channel
γ. In [8], certain channels with insertion, deletion and substitution errors are
characterized via word operations. For instance, the channel with exactly m in-
sertion errors is the set of all pairs (u, v) such that v ∈ u��Σm, and analogously
for deletion errors. The following definitions allow one to characterize channels
with substitution errors.

Definition 3. If u, v ∈ Σ∗ then we define the substitution in u by v as

u � v={u1v1u2v2 . . . ukvkuk+1 | k ≥ 0, u= u1a1u2a2 . . . ukakuk+1, v= v1 . . . vk,

ai, vi ∈ Σ, 1 ≤ i ≤ k, ai �= vi, ∀i, 1 ≤ i ≤ k}.

The case k = 0 corresponds to v = λ when no substitution is performed.

Definition 4. If u, v ∈ Σ∗ then we define the substitution in u of v as

u* v={u1a1u2a2 . . . ukakuk+1 | k ≥ 0, u= u1v1u2v2 . . . ukvkuk+1, v= v1 . . . vk,

ai, vi ∈ Σ, 1 ≤ i ≤ k, ai �= vi, ∀i, 1 ≤ i ≤ k}.

Definition 5. Let u, v ∈ Σ∗, |u| = |v|, let H(u, v) be the Hamming distance of
u and v. We define

u� v={v1v2 . . . vk | k = H(u, v), u = u1a1 . . . ukakuk+1, v = u1v1 . . . ukvkuk+1,

ai, vi ∈ Σ, 1 ≤ i ≤ k, ai �= vi, ∀i, 1 ≤ i ≤ k}.

The above definitions are due to [8], where it is also shown that the left- and the
right-inverse of � are * and �, respectively. Given two binary word operations
♦1, ♦2, their composition (♦1♦2) is defined as

w ∈ u(♦1♦2)v ⇐⇒ w ∈ (u♦1 v1)♦2 v2, v = v1v2,

for all u, v, w ∈ Σ∗. Then it is among others shown that:

(i) The channel with at most m substitution and insertion errors is equal to
{(u, v) | v ∈ u(*��)(Σ0 ∪ · · · ∪Σm)}.

(i) The channel with at most m substitution and deletion errors is equal to
{(u, v) | v ∈ u(��)(Σ0 ∪ · · · ∪Σm)}.

Moreover, further consequences including composition of channels, inversion of
channels etc. are derived. The above substitution operations can be generalized
using trajectories as follows.

150 Lila Kari, Stavros Konstantinidis, and Petr Sośık

Definition 6. For a trajectory t ∈ V ∗ and u, v ∈ Σ∗ we define the substitution
in u by v on trajectory t as

u �t v = {u1v1u2v2 . . . ukvkuk+1 | k ≥ 0, u = u1a1 . . . ukakuk+1, v = v1 . . . vk,

t = 0j110j21 . . . 0jk10jk+1 , ai, vi ∈ Σ, 1 ≤ i ≤ k, ai �= vi, ∀i, 1 ≤ i ≤ k,

ji = |ui|, 1 ≤ i ≤ k + 1}.

Definition 7. For a trajectory t ∈ V ∗ and u, v ∈ Σ∗ we define the substitution
in u of v on trajectory t as

u*t v = {u1a1u2a2 . . . ukakuk+1 | k ≥ 0, u = u1v1 . . . ukvkuk+1, v = v1 . . . vk,

t = 0j110j21 . . . 0jk10jk+1 , ai, vi ∈ Σ, 1 ≤ i ≤ k, ai �= vi, ∀i, 1 ≤ i ≤ k,

ji = |ui|, 1 ≤ i ≤ k + 1}.

Definition 8. For a trajectory t ∈ V ∗ and u, v ∈ Σ∗ we define the right differ-
ence of u and v on trajectory t as

u�t v = {v1v2 . . . vk | k ≥ 0, u = u1a1 . . . ukakuk+1, v = u1v1 . . . ukvkuk+1,

t = 0j110j21 . . . 0jk10jk+1 , ai, vi ∈ Σ, 1 ≤ i ≤ k, ai �= vi, ∀i, 1 ≤ i ≤ k,

ji = |ui|, 1 ≤ i ≤ k + 1}.

These operations can be generalized to sets of trajectories in the natural way:

u �T v =
⋃
t∈T

u �t v, u*T v =
⋃
t∈T

u*t v and u�T v =
⋃
t∈T

u�t v.

Example 2. Let T = V ∗, i.e. the set T contains all the possible trajectories.
Then �T =�, *T = * and �T = �.

One can observe that similarly as in [8], the above defined substitution on trajec-
tories could be used to characterize channels where errors occur in certain parts
of words only, or with a certain frequency and so on. Due to the fact that the
trajectory is a syntactic restriction, only such channels can be modelled where
the occurrence of errors may depend on the length of the transferred message,
but not on its content. In the sequel we study various properties of the above
defined substitution operations.

Lemma 2. For a set of trajectories T and words u, v ∈ Σ∗, the following
holds:

(i) �l
T = *T and �r

T = �T ,

(ii) *l
T = �T and *r

T = �′
T ,

(iii) �l
T = *′

T and �r
T = �T .

Proof. (i) Consider the characteristic relation C�t of the operation �t . Observe
that (w, u, v) ∈ C�t iff (u,w, v) ∈ C�l

t
iff (v, u, w) ∈ C�r

t
. Then the statements

Substitution on Trajectories 151

�l
t = *t and �r

t = �t, t ∈ T, follow directly by careful reading the definitions
of �t, *t and �t. Now observe that

u �l
T v =

⋃
t∈T

u �l
t v =

⋃
t∈T

u*t v = u*T v.

The proof for �r
T is analogous.

(ii) Due to Lemma 1, �l
T = *T implies *l

T = �T and �r
T = �T implies

*r
T = �lr

T = �r′
T = �′

T .

(iii) Similarly, �r
T = �T implies �r

T = �T , and consequently �l
T = �rl

T

= �l′
T = *′

T . ��

5 Closure Properties

Before addressing the closure properties of substitution, we show first that any
(not necessarily recursively enumerable) language over a two letter alphabet can
be obtained as a result of substitution.

Lemma 3. For an arbitrary language L ⊆ {a, b}∗ there exists a set of trajecto-
ries T such that

(i) L = a∗ �T b∗,
(ii) L = a∗*T a

∗.

Proof. Let T = φ(L), φ : {a, b}∗ −→ V ∗ being a coding morphism such that
φ(a) = 0, φ(b) = 1. The statements follow easily by definition. ��

Similarly as in the case of shuffle and deletion on trajectories [1, 16, 10], the
substitution on trajectories can be characterized by simpler language operations.

Lemma 4. Let ♦T be any of the operations �T , *T , �T . Then there exists a
finite substitution h1, morphisms h2, g and a regular language R such that for
all languages L1, L2 ⊆ Σ∗, and for all sets of trajectories T ⊆ V ∗,

L1♦T L2 = g((h1(L1)�� h2(L2)�� T) ∩R). (3)

Proof. Let Σi = {ai | a ∈ Σ}, for i = 1, 2, 3, be copies of Σ such that Σ, Σ1, Σ2,
Σ3 and V are pairwise disjoint alphabets. For a letter a ∈ Σ, we denote by ai

the corresponding letter from Σi, i = 1, 2, 3.
Let further h1 : Σ −→ (Σ1∪Σ3) be a finite substitution and let h2 : Σ −→ Σ2

and g : (Σ1 ∪Σ2 ∪Σ3 ∪ V) −→ Σ be morphisms.

(i) If ♦T =�T , then define h1(a) = {a1, a3}, h2(a) = a2 for each a ∈ Σ. Let

R = (Σ1 · {0} ∪ {a3b21 | a, b ∈ Σ, a �= b})∗.
Let further g(a1) = a, g(a2) = a for all a1 ∈ Σ1, a2 ∈ Σ2, and g(x) = λ for
all x ∈ Σ3 ∪ V. Then one can easily verify that (3) holds true.

152 Lila Kari, Stavros Konstantinidis, and Petr Sośık

(ii) If ♦T = *T , then let h1(a) = {a1} ∪ {a3} ·Σ1, h2(a) = a2 for each a ∈ Σ.
Let further

R = (Σ1 · {0} ∪ {a3a2b11 | a, b ∈ Σ, a �= b})∗,
and g(a1) = a for all a1 ∈ Σ1, g(x) = λ for all x ∈ Σ2 ∪Σ3 ∪ V.

(iii) If ♦T = �T , then define h1(a) = a1, h2(a) = {a2, a3} for each a ∈ Σ. Let

R = ({a1a20 | a ∈ Σ} ∪ {a1b31 | a, b ∈ Σ, a �= b})∗,
and g(a3) = a for all a3 ∈ Σ3, g(x) = λ for all x ∈ Σ1 ∪Σ2 ∪ V.

��
The previous lemmata allow us to make statements about closure properties

of the substitution operations now.

Theorem 1. For a set of trajectories T ⊆ V ∗, the following three statements
are equivalent.

(i) T is a regular language.
(ii) L1 �T L2 is a regular language for all L1, L2 ⊆ Σ∗.
(iii) L1*T L2 is a regular language for all L1, L2 ⊆ Σ∗.

Proof. The implications (i) ⇒ (ii) and (i) ⇒ (iii) follow by Lemma 4 due to the
closure of the class of regular languages with respect to shuffle, finite substitution,
morphisms and intersection.

To show the implication (ii) ⇒ (i), assume that L1 �T L2 is a regular lan-
guage for all L1, L2 ⊆ Σ∗. Let a, b ∈ Σ without loss of generality, then also
L = a∗ �T b∗ is a regular language, and T = φ−1(L), φ being the coding defined
in the proof of Lemma 3. Consequently, T is regular. The implication (iii) ⇒ (i)
can be shown analogously. ��
Theorem 2. For all regular set of trajectories T ⊆ V ∗ and regular languages
L1, L2 ⊆ Σ∗, L1 �T L2 is a regular language.

Proof. The same as the proof of Theorem 1, (i) ⇒ (ii). ��
Theorem 3. Let ♦T be any of the operations �T , *T , �T .

(i) Let any two of the languages L1, L2, T be regular and the third one be
context-free. Then L1♦T L2 is a context-free language.

(ii) Let any two of the languages L1, L2, T be context-free and the third one be
regular. Then L1♦T L2 is a non-context-free language for some triples (L1,
L2, T).

Proof. (i) Follows by Lemmata 4, and by closure of the class of context-free
languages with respect to finite substitution, shuffle, morphisms and inter-
section with regular languages.

(ii) Consider the alphabet Σ = {a, b, c, d}.
1. Let ♦T =�T .

Substitution on Trajectories 153

(1) Consider L1 = {andb2n |n > 0}, L2 = {amcm |m > 0} and T = V ∗,
then (L1 �T L2) ∩ a∗da∗c∗ = andancn.

(2) Consider L1 = {anb2n |n > 0}, L2 = c+ and T = {02m1m |m > 0},
then L1 �T L2 = anbncn.

(3) Consider L1 = a+, L2 = {bncn |n > 0} and T = {0m12m |m > 0},
then L1 �T L2 = anbncn.

2. Let ♦T = *T . Consider:
(1) L1 = {anbakbal | k+ l+ 1 = 2n > 0}, L2 = {ambam+1 |m > 0} and

T = 0+1+,
(2) L1 = {anbna∗ |n > 0}, L2 = a+ and T = 02m+11m,
(3) L1 = a+ba+, L2 = {anban |n > 0} and T = {0m12m+1 |m > 0},
then in all three cases (L1*T L2) ∩ a∗b∗ab∗ = anbnabn.

3. Let ♦T = �T . Consider:
(1) L1 = {c2mdcma∗ |m > 0}, L2 = {anbnda∗ |n > 0} and T = V +,
(2) L1 ={bnandb+a∗ |n > 0}, L2 =a+b+da+ and T ={12m01m0∗ |m >

0},
(3) L1 = c+dc+a∗, L2 = {anbnda∗ |n > 0} and T = {12m01m0∗ |m >

0},
then in all three cases (L1 �T L2) ∩ {a, b}∗ = anbnan.

In all the above cases we have shown that L1♦T L2 is a non-context-free
language.

��

6 Decision Problems

In this section we study three elementary types of decision problems for language
equations of the form L1♦T L2 = R, where ♦T is one of the operations �T , *T ,
�T . These problems, studied already for various binary word operations in [7,
6, 1, 10, 5] and others, are stated as follows. First, given L1, L2 and R, one asks
whether the above equation holds true. Second, the existence of a solution L1

to the equation is questioned, when L1 is unknown (the left operand problem).
Third, the same problem is stated for the right operand L2. All these problems
have their variants when one of L1, L2 (the unknown language in the case of the
operand problems) consists of a single word.

We focus now on the case when L1, L2 and T are all regular languages.
Then L1♦T L2 is also a regular language by Theorems 1, 2, ♦T being any of the
operations �T , *T , �T . Immediately we obtain the following result.

Theorem 4. The following problems are both decidable if the operation ♦T is
one of �T , *T , �T , T being a regular set of trajectories:

(i) For given regular languages L1, L2, R, is L1♦T L2 = R?
(ii) For given regular languages L1, R and a word w ∈ Σ∗, is L1♦T w = R?

Also the decidability of the left and the right operand problems for languages
are straightforward consequences of the results in Section 5 and some previously
known facts about language equations [7].

154 Lila Kari, Stavros Konstantinidis, and Petr Sośık

Theorem 5. Let ♦T be one of the operations �T , *T , �T . The problem “Does
there exist a solution X to the equation X ♦T L = R?” (left-operand problem)
is decidable for regular languages L, R and a regular set of trajectories T.

Proof. Due to [7], if a solution to the equation X ♦T L = R exists, then also
Xmax = (Rc♦l

T L)c is also a solution, ♦T being an invertible binary word oper-
ation. In fact, Xmax is the maximum (with respect to the subset relation) of all
the sets X such that X ♦T L ⊆ R. We can conclude that a solution X exists iff

(Rc♦l
T L)c♦T L = R. (4)

holds. Observe that if ♦T is one of �T , *T , �T , then ♦l
T is *T , �T or *′

T ,
respectively, by Lemma 2. Hence the left side of the equation (4) represents
an effectively constructible regular language by Theorems 1, 2. Consequently,
the validity of (4) is decidable and moreover the maximal solution Xmax =
(Rc♦l

T L)c can be effectively found if one exists. ��
Theorem 6. Let ♦T be one of the operations �T , *T , �T . The problem “Does
there exist a solution X to the equation L♦T X = R?” (right-operand problem)
is decidable for regular languages L, R and a regular set of trajectories T.

Proof. Similarly as in the proof of Theorem 5, a maximal solution to the equation
L♦T X = R is Xmax = (L♦r

T R
c)c for a binary word operation ♦T , see [7].

Hence a solution X exists iff

L♦T (L♦r
T R

c)c = R (5)

By Lemma 2, if ♦T is one of �T ,*T , �T , then ♦r
T is �T , �

′
T or �T , respectively.

Again the validity of (5) is effectively decidable by Theorems 1, 2, and, moreover,
an eventual maximal solution Xmax = (L♦r

T R
c)c can be effectively found. ��

The situation is a bit different in the case when the existence of a singleton
solution to the left or the right operand problem is questioned. Another proof
technique takes place.

Theorem 7. Let ♦T be one of the operations �T , *T , �T . The problem “Does
there exist a word w such that w♦T L = R?” is decidable for regular languages
L, R and a regular set of trajectories T.

Proof. Assume that ♦T is one of �T , *T , �T . Observe first that if y ∈ w♦T x
for some w, x, y ∈ Σ∗, then |y| ≤ |w|. Therefore, if R is infinite, then there
cannot exist a solution w of a finite length satisfying w♦T L = R. Hence for an
infinite R the problem is trivial.

Assume now that R is finite. As shown in [7], the regular set Xmax =
(Rc♦l

T L)c is the maximal set with the property X ♦T L ⊆ R. Hence w is a
solution of w♦T L = R iff

(i) w♦T L ⊆ R, i.e. w ∈ Xmax, and
(ii) w♦T L �⊂ R.

Substitution on Trajectories 155

Moreover, (ii) is satisfied iff w♦T L �⊆ R1 for all R1 ⊂ R, and hence w �∈
(Rc

1♦l
T L)c. Hence we can conclude that the set S of all singleton solutions to

the equation w♦T L = R can be expressed as

S = (Rc♦l
T L)c −

⋃
R1⊂R

(Rc
1♦l

T L)c.

Since we assume that R is finite, the set S is regular and effectively constructible
by Lemma 2, Theorems 1, 2 and the closure of REG under finite union and
complement. Hence it is also decidable whether S is empty or not, and eventually
all its elements can be effectively listed. ��
Theorem 8. Let ♦T be one of the operations �T , *T , �T . The problem “Does
there exist a word w such that L♦T w = R?” is decidable for regular languages
L, R and a regular set of trajectories T.

Proof. Assume first that ♦T is one of �T , *T . Observe that if y ∈ x♦T w for
some w, x, y ∈ Σ∗, then |y| ≥ |w|. Therefore, if a solution w to the equation
L♦T w = R exists, then |w| ≤ k, where k = min{|y| | y ∈ R}. Hence, to
verify whether a solution exists or not, it suffices to test all the words from
Σ0 ∪Σ1 ∪ · · · ∪Σk.

Focus now on the operation �T . Analogously to the case of Theorem 7, we
can deduce that there is no word w satisfying L �T w = R, if R is infinite.
Furthermore, the set Xmax = (L�r

T R
c)c = (L �T Rc)c is the maximal set with

the property L �T X ⊆ R. The same arguments as in the proof of Theorem 7
allow one to express the set of all singleton solutions as

S = (L �T Rc)c −
⋃

R1⊂R

(L �T Rc
1)

c.

For a finite R, the set S is regular and effectively constructible, hence we can
decide whether it contains at least one solution. ��

We add that in the above cases of the left and the right operand problems,
if there exists a solution, then at least one can be effectively found. Moreover, in
the case of their singleton variants, all the singleton solutions can be effectively
enumerated.

7 Applications

In this section we discuss a few applications of the substitution-on-trajectories
operation in modelling certain noisy channels and a cryptanalysis problem. In
the former case, we revisit a decidability question involving the property of error-
detection.

For positive integers m and l, with m < l, consider the SID channel [12]
that permits at most m substitution errors in any l (or less) consecutive symbols
of any input message. Using the operation �T , this channel is defined as the

156 Lila Kari, Stavros Konstantinidis, and Petr Sośık

set of pairs of words (u, v) such that u is in v �T Σ∗, where T is the set of all
trajectories t such that, for any subword s of t, if |s| ≤ l then |s|1 ≤ m. In general,
following the notation of [8], for any trajectory set T we shall denote by [�T Σ∗]
the channel {(u, v) | v ∈ u �T Σ∗}. In the context of noisy channels, the concept
of error-detection is fundamental [13]. A language L is called error-detecting for
a channel γ, if γ cannot transform a word in Lλ to another word in Lλ; that is,
if u, v ∈ Lλ and (u, v) ∈ γ then u = v. Here Lλ is the language L ∪ {λ}. The
empty word in this definition is needed in case the channel permits symbols to
be inserted into, or deleted from, messages – see [13] for details. In our case,
where only substitution errors are permitted, the above definition remains valid
if we replace Lλ with L.

In [13] it is shown that, given a rational relation γ and a regular language
L, we can decide in polynomial time whether L is error-detecting for γ. Here we
take advantage of the fact that the channels [�T Σ∗] permit only substitution
errors and improve the time complexity of the above result.

Theorem 9. The following problem is decidable in time O(|A|2|T |).
Input: NFA A over Σ and NFA T over {0, 1}.
Output: Y/N, depending on whether L(A) is error-detecting for [�T Σ∗].

Proof. In [9] it is shown that given an NFA A, one can construct the NFA Aσ,
in time O(|A|2), such that the alphabet of Aσ is E = Σ ×Σ and the language
accepted by Aσ consists of all the words of the form (x1, y1) · · · (xn, yn), with each
(xi, yi) ∈ E, such that x1 · · ·xn �= y1 · · · yn and the words x1 · · ·xn and y1 · · · yn

are in L(A). Let φ be the morphism of E into {0, 1} such that φ(x, y) = 0 iff
x = y. One can verify that L(A) is error-detecting for [�T Σ∗] iff the language
φ(L(Aσ))∩L(T) is empty. Using this observation, the required algorithm consists
of the following steps: (i) Construct the NFA Aσ from A. (ii) Construct the NFA
φ(Aσ) by simply replacing each transition s(x, y) → t of Ac with sφ(x, y) → t.
(iii) Use a product construction on φ(Aσ) and T to obtain an NFA B accepting
φ(L(Aσ))∩L(T). (iv) Perform a depth first search algorithm on the graph of B
to test whether there is a path from the start state to a final state. ��

We close this section with a cryptanalysis application of the operation �T .
Let V be a set of candidate binary messages (words over {0, 1}) and let K be a
set of possible binary keys. An unknown message v in V is encrypted as v ⊕ t,
where t is an unknown key in K, and ⊕ is the exclusive-OR logic operation.
Let e be an observed encrypted message and let T be a set of possible guesses
for t, with T ⊆ K. We want to find the subset X of V for which X ⊕ T = e,
that is, the possible original messages that can be encrypted as e using the keys
we have guessed in T . In general T can be infinite and given, for instance, by a
regular expression describing the possible pattern of the key. We can model this
problem using the following observation whose proof is based on the definitions
of the operations �T and ⊕, and is left to the reader.

Substitution on Trajectories 157

Lemma 5. For every word v and trajectory t, v �T Σ∗ = {v ⊕ t}.

By the above lemma, we have that the equation X ⊕ T = e is equivalent
to X �T Σ∗ = e. By Theorem 5, we can decide whether there is a solution for
this equation and, in this case, find the maximal solution Xmax. In particular,
Xmax = (ec*TΣ

∗)c. Hence, one needs to compute the set M∩Xmax. Most likely,
for a general T , this problem is intractable. On the other hand, this method
provides an alternate way to approach the problem.

References

1. M. Domaratzki, Deletion Along Trajectories. Tech. report 464-2003, School of Com-
puting, Queen’s University, 2003, and accepted for publication.

2. M. Domaratzki, Splicing on Routes versus Shuffle and Deletion Along Trajectories.
Tech. report 2003-471, School of Computing, Queen’s University, 2003.

3. M. Domaratzki, Decidability of Trajectory-Based Equations. Tech. report 2003-472,
School of Computing, Queen’s University, 2003.

4. M. Domaratzki, A. Mateescu, K. Salomaa, S. Yu, Deletion on Trajectories and
Commutative Closure. In T. Harju and J. Karhumaki, eds., WORDS’03: 4th In-
ternational Conference on Combinatorics on Words. TUCS General Publication
No. 27, Aug. 2003, 309–319.

5. M. Ito, L. Kari, G. Thierrin, Shuffle and scattered deletion closure of lan-
guages.Theoretical Computer Science 245 (2000), 115–133.

6. L. Kari, On insertion and deletion in formal languages, PhD thesis, University of
Turku, Finland, 1991.

7. L. Kari, On language equations with invertible operations, Theoretical Computer
Science 132 (1994), 129–150.

8. L. Kari, S. Konstantinidis, Language equations, maximality and error detection.
Submitted.

9. L. Kari, S. Konstantinidis, S. Perron, G. Wozniak, J. Xu, Finite-state error/edit-
systems and difference measures for languages and words. Dept. of Math. and
Computing Sci. Tech. Report No. 2003-01, Saint Mary’s University, Canada, 2003.

10. L. Kari, P. Sośık, Language deletion on trajectories. Dept. of Computer Science
technical report No. 606, University of Western Ontario, London, 2003, and sub-
mitted for publication.

11. L. Kari, S. Konstantinidis, P. Sośık, On Properties of Bond-Free DNA Languages.
Dept. of Computer Science Tech. Report No. 609, Univ. of Western Ontario, 2003,
and submitted for publication.

12. S. Konstantinidis, An algebra of discrete channels that involve combinations of
three basic error types. Information and Computation 167 (2001), 120–131.

13. S. Konstantinidis, Transducers and the properties of error detection, error correc-
tion and finite-delay decodability. J. Universal Comp. Science 8 (2002), 278–291.

14. C. Martin-Vı́de, A. Mateescu, G. Rozenberg, A. Salomaa, Contexts on Trajectories,
TUCS Technical Report No. 214, Turku Centre for Computer Science, 1998.

15. A. Mateescu, A. Salomaa, Nondeterministic trajectories. Formal and Natural Com-
puting: Essays Dedicated to Grzegorz Rozenberg, LNCS 2300 (2002), 96-106.

16. A. Mateescu, G. Rozenberg, A. Salomaa, Shuffle on trajectories: syntactic con-
straints, Theoretical Computer Science 197 (1998), 1–56.

158 Lila Kari, Stavros Konstantinidis, and Petr Sośık

17. A. Mateescu, G. Rozenberg, A. Salomaa, Shuffle on Trajectories: Syntactic Con-
straints, TUCS Technical Report No. 41, Turku Centre for Computer Science,
1996.

18. G. Rozenberg, A. Salomaa (eds.), Handbook of Formal Languages, Springer-Verlag,
Berlin, 1997.

Recombination Systems

Mikko Koivisto, Pasi Rastas, and Esko Ukkonen�

Department of Computer Science, P.O. Box 26 (Teollisuuskatu 23)
FIN-00014 University of Helsinki, Finland

{mikko.koivisto, pasi.rastas, esko.ukkonen}@cs.helsinki.fi

Abstract. We study biological recombination from language-theoretic
and machine learning point of view. Two generative systems to model
recombinations are introduced and polynomial-time algorithms for their
language membership, parsing and equivalence problems are described.
Another polynomial-time algorithm is given for finding a small model for
a given set of recombinants.

1 Introduction

Recombination is one of the main mechanisms producing genetic variation. Sim-
ply stated, recombination refers to the process in which the DNA molecules of
a father chromosome and a mother chromosome get entangled and then split
off to produce the DNA of the child chromosome, composed of segments taken
alternately from the father DNA and the mother DNA (Fig 1) [1].

Fig. 1. Recombination

Combinatorial structures created by iterated recombinations have attracted
lots of interest recently. The discovery of so-called haplotype blocks [3, 5] has also
inspired the development of new efficient algorithms for the analysis of structural
regularities of the DNA, from various perspectives; e.g. [9, 4]. Some methods for
genetic mapping such as the recent approach of [7] also model recombinations.

In this paper we study recombination from language-theoretic and machine
learning point of view. Two simple systems are introduced to generate recombi-
nants starting from certain founding strings. Membership, parsing and equiva-
lence problems for these systems turn out in general easy. More interesting and
also much harder is the problem of inverting recombinations: given a sample set
of recombinants we want to construct a smallest possible system generating a
language that contains the sample.

� Supported by the Academy of Finland under grant 201560.

J. Karhumäki et al. (Eds.): Theory Is Forever (Salomaa Festschrift), LNCS 3113, pp. 159–169, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

160 Mikko Koivisto, Pasi Rastas, and Esko Ukkonen

The paper is organized as follows. Section 2 introduces simple recombination
systems. Such a system is specified just by giving a set of strings, the “founders”
of a population. Section 3 introduces another system, called the fragmentation
model, in which the strings that can be used as segments of recombinants are
listed explicitly. Language membership, parsing and equivalence problems for
these two systems are polynomial-time solvable, by well-known techniques from
finite automata [6] and string matching [2]. In Section 4 we consider a ma-
chine learning type of problem of constructing a good fragmentation model for
a sample set of recombinants. We give a polynomial-time algorithm that finds
a smallest model in a special case. Also in the general case the algorithm seems
useful although the result is not necessarily minimal.

2 Simple Recombination Systems

A recombination is an operation that takes two strings u and v of equal length
n and produces a new string w, also of length n, called a recombinant of u and
w, such that

w = xy

where x is a prefix of u and y is a suffix of v or x is a prefix of v and y is a
suffix of u. The recombinant w is said to have a cross-over at location |x|. For
simplicity we assume that a recombinant may have only one cross-over. As x or
y may be the empty string, u and v themselves are recombinants of u and v.

Let A be a set of strings of length n. The set of strings generated from A in
one recombination step is denoted

R(A) = {w | w is a recombinant of some u, v ∈ A}.
Let Σ be a finite alphabet. A simple m × n recombination system in Σ is

defined by a set F ⊆ Σn consisting of m strings of length n in Σ. The strings
in F are called the founders of the system. System F generates new sequences
by iterating the recombination operation. The generative process has a natural
division into generations giving the corresponding languages G0(F), G1(F), . . .
as follows:

G0(F) = F

G1(F) = R(F)
...

Gi(F) = R
(
Gi−1(F)

)
.

As G0(F) ⊆ G1(F) ⊆ · · · ⊆ Gi(F) ⊆ · · · ⊆ Σn there must be j such that after
the jth generation nothing new can be produced, that is, Gj′ (F) = Gj(F) for
all j′ ≥ j. We call L(F) = Gj(F) the full recombinant language of system F .

Recombination Systems 161

Example 1. Let Σ = {0, 1}, n = 4, and consider 2×4 system F = {0000, 0111}.
Then G1(F) = {0000, 0111, 0100, 0110, 0011, 0001} and G2(F) =
{0000, 0111, 0100, 0110, 0011, 0001, 0101, 0010}. Language G2(F) consists of
all strings in Σ4 that start with 0. This is also the full language L(F).

It should be obvious that w is in L(F) if and only if w can be written as

w = α1α2 · · ·αp (1)

for some non-empty strings αi ∈ Σ+ such that each αi occurs in some founder
string fj ∈ F at the same location as in w. That is, we have fj = γαiδ for some
γ such that |γ| = |α1 · · ·αi−1|. Each decomposition (1) of w into fragments αi is
called a parse of w with respect to F .

String w may have several different parses. Two of them are of special interest.
First, if w has some parse (1) then it also has a parse such that |αi| = 1 for all
i = 1, 2, . . . , p and p = n. We then note that a string w1w2 · · ·wn, where wi ∈ Σ,
belongs to L(F) if and only if for each wi there is some fj ∈ F whose ith symbol
is wi. Let us denote by Σi the symbols in Σ that occur at the ith location of
some string in F . We call Σi the local alphabet of F at i. Summarized we get
the following simple result.

Theorem 1. L(F) = Σ1Σ2 · · ·Σn ��
This immediately gives a language equivalence test for recombination sys-

tems. Let E and F be two recombination systems of length n, and letΠ1, Π2, . . . ,
Πn be the local alphabets of E andΣ1, Σ2, . . . , Σn the local alphabets of F . Then
L(E) = L(F) if and only if Πi = Σi for all i = 1, 2, . . . , n. So, for example sys-
tems {0000, 1111} and {0101, 1010} are equivalent as all local alphabets are
equal to {0, 1}.

The simplicity of the equivalence test also indicates that the sequential struc-
ture of the founders has totally disappeared in L(F). Therefore it is more in-
teresting to look at strings that have a parse consisting of a small number of
fragments αi. This leads us to define the canonical parses.

Let w ∈ L(F). Then a parse w = α1α2 · · ·αp of w with respect to F is
canonical, if

1. p is smallest possible; and
2. among parses of w with p fragments, each |α1α2 · · ·αi|, 1 ≤ i < p, is largest

possible.

A canonical parse of w is easily seen unique. It can be found by the following
greedy parsing algorithm. First find the longest prefix of w that is also a prefix of
some string in F . This prefix is fragment α1 of the canonical parse. Then remove
|α1| symbols long prefix from w and from all members of F . Repeat the same
steps to find longest prefix that becomes α2, and so on, until the entire w has
been processed or it turns out that parsing can not be continued to the end of
w, in which case w �∈ L(F).

We will use the number p − 1 of the cross-overs in the canonical parse as
a distance measure for strings: the recombination distance ρ(w,F) between w

162 Mikko Koivisto, Pasi Rastas, and Esko Ukkonen

and F is p− 1, the smallest possible number of cross-overs in a parse of w with
respect to F . Note that ρ(w,F) ≤ n − 1 for all w ∈ L(F). If w �∈ L(F), we let
ρ(w,F) =∞.

The greedy parsing algorithm finds ρ(w,F). The algorithm works without
any preprocessing of F and can be organized to run in time O(mn), i.e. linear
in the total length of the strings in F . We now describe a preprocessing of F
which constructs a collection of trie structures such that canonical parsing of
any string with respect of F can be done in optimal time O(n).

In the canonical parsing by the greedy method one has to find the longest
prefix of the current suffix of w that is common with the corresponding suffix of
some founder f ∈ F . Let wi = wiwi+1 · · ·wn and f i

j = fjifji+1 · · · fjn denote the
ith suffixes of w and the founders, and let T i denote the trie representing strings
f i
1, f

i
2, · · · , f i

m. The longest common prefix, that will become the first fragment
of the parse, can be found by traversing the path of T 1 for w1 until a symbol of
w1 is encountered, say wh, that is not present in T 1 (or w1 ends). The scanned
prefix is the fragment α1 of the canonical parse. We needed O(|α1|) time to find
it this way. The parsing continues by next traversing the path of T h for wh,
giving α2 in time O(|α2|), and so on.

To make this work we need the tries T 1, T 2, . . . , T n. A straightforward con-
struction of a trie for m = |F | strings of length n takes time O(mn) assuming
that |Σ| is constant. Hence the total time for all tries would be O(mn2). We
next describe a suffix-tree based technique for constructing these tries in time
O(mn).

The suffix-tree of a string x is a (compacted) trie representing all the suffixes
of x. The size of the tree is O(|x|), and it can be constructed in time O(|x|)
by several alternative algorithms [2]. To get the tries T h that form our parser
for F we first augment the founder strings with explicit location indices, such
that founder string fi = fi1fi2 · · · fin becomes f̂i = (fi1, 1)(fi2, 2) · · · (fin, n).
Now construct the suffix-tree T for string f̂ = f̂1f̂2 · · · f̂m. Then trie T h consists
of the subtrees of T representing suffixes that start with symbols (a, h), where
a ∈ Σ. Hence tries T h can be extracted from T in one scan through the edges
that are adjacent to the root.

This construction can be performed in O(mn) time, i.e., linear time in the
length of f̂ although we have formally used alphabet of non-constant size |Σ|n.
This is because the non-root nodes of T may only have |Σ| branches and hence
the branching degree at such nodes does not depend on n. While the root node
can have O(|Σ|n) branches, the dependency on n can be made constant by direct
indexing (or bucketing) on the second component of a symbol.

Finally note that the tries T h extracted from T are of compacted form, i.e.,
the non-branching nodes of the trie are represented only implicitly. The edges of
a compacted trie correspond to strings (instead of single symbols), represented
by pairs of pointers to the original strings in F . In our greedy parsing algorithm
such tries can be used as well, without significant overhead.

Recombination Systems 163

Theorem 2. Given an m × n recombination system F , a greedy parser for F
can be constructed in time O(mn). For any string w, the parser computes in time
O(n) the canonical parse of w with respect to F and the recombination distance
ρ(w,F). ��

Canonical parsing is not the only possible use of the parser of Theorem 2.
All possible parses of w can be generated if, instead of greedily traversing the
current trie as far as possible, the parsing jumps to the next trie at any point
on the way. It is also possible to check whether or not w has a parse with given
cross-over points: Then the parsing should jump to the next trie exactly on these
points. The parses can also be utilized to find a string w with largest possible
distance ρ(w,F).

3 Generalized Recombination Systems and Fragmentation
Models

Parsing a string as introduced in the previous section means decomposing the
string into fragments taken from the founders. The available fragments were
implicitly defined by the founders: any substring of a founder can be used in a
parse.

We now go one step further and introduce models in which the available
fragments are listed explicitly.

A fragmentation model of length n in alphabet Σ is a state-transition system
M = (S,Q,Σ, n) consisting of a finite set S of the states and a set Q of tran-
sitions. Each s ∈ S is a pair (i, v), where i is an integer 1 ≤ i ≤ n, and string
v ∈ Σ∗ is the fragment of the state such that |v| ≤ n− i+1. We call b(s) = i the
begin location and b(s) = i + |v| the end location of s. A state s is a start state
if b(s) = 1 and an end state if e(s) = n+ 1. The transition set Q is any subset
of S × S such that if (r, s) ∈ Q then e(r) = b(s), that is, the location intervals
covered by r and s should be next to each other.

The language L(M) ofM consists of all strings generated along the transition
paths from a start state to an end state. More formally, e ∈ L(M) if and only if
there are states s1, s2, . . . sp such that (si, si+1) ∈ Q for 1 ≤ i < p, s is a start
state and sp is an end state, and w = v1v2 · · · vp where vi is the fragment of
state si. Note that all w ∈ L(M) are of length n. Also note that fragmentation
models are a subclass of finite-state automata. Hence for example their language
equivalence is solvable by standard methods [6].

Example 2. A simple m × n recombination system F of the previous section
consisting ofm founders fj = fj1fj2 · · · fjn can be represented as a fragmentation
model M = (S,Q,Σ, n) as follows: set S consists of all states (i, v) where 1 ≤
i ≤ n and v = fjifji+1 · · · fjh for some 1 ≤ j ≤ m and i ≤ h ≤ n. The transition
(r, s) is included into Q for all r, s such that e(r) = b(s). Note that M is much
larger than F . It has O(mn2) states and O(m2n3) transitions, and the fragments
of the states have total length O(mn3). ��

164 Mikko Koivisto, Pasi Rastas, and Esko Ukkonen

Each transition path gives for the generated string a parse into fragments.
Different parses for the same string can be efficiently enumerated and analyzed
for example by using dynamic programming combined with breadth-first traver-
sal of the transition graph of M . We describe next an algorithm for finding a
parse with smallest number of fragments, i.e., a shortest path through M that
generates the string to be parsed.

Let w be the string to be parsed. We say that state (i, v) of M matches w if
w = xvy where |x| = i− 1. We associate with each state s a counter c(s) whose
value will be the length of a shortest path to s that will generate the prefix of
length b(s) − 1 of w. Variable P will be used to store the length of a shortest
parse. The parsing algorithm is as follows:

1. Let s1, s2 . . . st be the states of M ordered according to increasing value of
e(sj)

2. Initialize the counters

P ←∞
c(sj)←

{
0 , if sj is a start state
∞ , otherwise

3. for j ← 1, 2, . . . , t do
if c(sj) <∞ and sj matches w then

if sj is an end state then
P ← min(P, c(sj) + 1)

else
for all sk such that (sj , sk) ∈ Q

c(sk)← min(c(sk), c(sj) + 1)

The algorithm can be implemented such that the running time is linear in
the size of M . We also observe that testing whether or not some states of M and
w match can be done very fast by first constructing Aho-Corasick multi-pattern
matching automaton [2] for the fragments of the states and then scanning w
with this automaton.

4 Model Reconstruction Problems

The language membership and equivalence well as parsing problems for recom-
bination systems turned out solvable by fast algorithms, not unexpectedly as
we are dealing with a limited subclass of the regular languages. We now discuss
much harder problems concerning inversion of recombinations.

Given a set D of strings of length n we want to find a model that could have
generated D. This question was addressed in [8] in the case of simple recombi-
nation systems. For example, an algorithm was given in [8] that constructs an
m × n recombination system F such that D ⊆ L(F) and the average recombi-
nation distance of the elements of D from F is minimized. Here we will consider

Recombination Systems 165

the problem of finding fragmentation models for D. The fragments of such a
model can be thought to represent the “conserved” substrings of D.

The goodness of a fragmentation model M for set D can be evaluated using
various criteria. A possibility is to consider probabilistic generalizations of frag-
mentation models and apply model selection criteria such as the Minimum De-
scription Length principle. We will resort to combinatorial approach and consider
the following parsimony criterion: find a fragmentation model M = (S,Q,Σ, n)
such that D ⊆ L(M) and the number of states in Q is smallest possible. We call
this the minimal fragmentation model reconstruction problem.

Example 3. Let D consist of strings

0 0 0 0 1 1
0 0 0 1 1 1
0 0 1 0 1 1
0 0 0 0 0 0
0 0 0 1 0 0
1 1 1 0 1 1
1 1 0 0 0 0
1 1 0 1 0 0
1 1 1 0 0 0

(2)

By taking the strings in D as such (and nothing else) as the fragments we get a
fragmentation model which generates exactly D and has 9 states. However, the
model depicted in Fig 2 has only 7 states. It generates a language that properly
contains D. ��

0 0

1 1

0 0

0 1

1 0

0 0

1 1

Fig. 2. A fragmentation model (begin locations of states not explicitly shown)

We rephrase now the minimal fragmentation model reconstruction in terms
of certain tilings of D. Let us refer to the m strings in D by 1, 2, . . . ,m; the ith
string is di1di2 · · · din. Then any triple τ = (A, h, k), where A ⊆ {1, 2, . . . ,m}
and h and k are integers such that 1 ≤ h ≤ k ≤ m, is a tile of D. Set A is the
row-set of τ . The tile τ covers all substrings dihdih+1 · · ·dik where i ∈ A. The
tile is uniform if all substrings it covers are equal, i.e., dih · · · dik = djh · · · djk

for all i, j ∈ A. A set T of tiles of D is a uniform tiling of D if the tiles in T are
uniform and disjoint and cover D, i.e., for each dij there is exactly one tile in T
that covers dij .

166 Mikko Koivisto, Pasi Rastas, and Esko Ukkonen

A fragmentation model M such that D ⊆ L(M) induces a uniform tiling
T (M) of D as follows. Fix for each string d ∈ D a path of M that spells out
d. For any state s = (i, v) of M , let A be the set of strings in D whose path
goes through s. Then add the tile (A, i, i+ |v| − 1) to T (M). It should be clear
that T (M) is a uniform tiling of D. Note that there are several different tilings
T (M) if some d ∈ D is ambiguous with respect to M , i.e., if M has more than
one path for d.

On the other hand, given a uniform tiling T of D, one may construct a
fragmentation model M(T) as follows. For each tile (A, h, k) ∈ T , add to M(T)
a state s = (h, v) where v = dih · · · dik for some i ∈ A. Also add a transition
(s, s′) to M(T) if the tiles (A, h, k) and (A′, h′, k′) in T that correspond to s and
s′ are such that row-set intersection A ∩A′ is nonempty and k + 1 = h′.

As the number of states of M(T) equals the number of tiles in T , and the
number of tiles in T (M) is at most the number of states of M , we get the
following result.

Proposition 1. The number of states of the smallest fragmentation model M
such that D ⊆ L(M)equals the number of tiles in the smallest uniform tiling
of D.

To solve the minimal fragmentation model reconstruction we will construct
small uniform tilings for D. We will proceed in two main steps. First a rather
simple dynamic programming algorithm is given to find optimal tilings in a
subclass called the column-structured tilings. In the second step we apply certain
local transformations to further improve the solution.

A uniform tiling of D is column-structured if the tiles cover D in columns: for
each two tiles (A, h, k) and (A′, h′, k′), if h = h′ then k = k′. The corresponding
class of fragmentation models (models whose fragments with the same begin
location are of equal length) is also called column-structured models. If a column-
structured tiling is smallest possible, then the number of tiles in each column
should obviously be minimal. Such minimal tiling for a column is easy to find
as follows. Consider set D(h, k) consisting of strings dih · · · dik for 1 ≤ i ≤ m.
Let A1, A2, . . . Ap be the partition of {1, 2, . . . ,m} such that i and j belong
to the same class Ar if and only if dih · · ·dik = djh · · · djk. Then the tiling(
(A1, h, k), . . . , (Ap, h, k)

)
of D(h, k) is uniform and has the smallest possible

number of tiles among tilings whose tiles are from h to k. We denote this tiling
by t(h, k) and its size p by σ(h, k).

Let S(j) be the size of smallest column-structured tiling of D(1, j). Then
S(j) can be evaluated for j = 0, 1, . . . , n from{

S(0) = 0
S(j) = mini<j

(
S(i) + σ(i+ 1, j)

) (3)

and S(n) gives the size of smallest column-structured uniform tiling of entire
D. The usual trace-back of dynamic programming can be used to find the end
locations j1, j2, . . . , jq = n of the corresponding columns. Then the smallest
tiling itself is t(1, j1) ∪ t(j1 + 1, j2) ∪ · · · ∪ t(jq−1 + 1, n).

Recombination Systems 167

Evaluation of (3) takes time O(n2) plus the time for evaluating tables σ and
t which can be accomplished in time O(n2m) using straightforward trie-based
techniques. We have obtained the following theorem.

Theorem 3. Minimal column-structured fragmentation model for D can be con-
structed in time O(n2m) where n is the length and m the number of strings in D.

Example 4. The fragmentation model in Fig 2 for the set (2) of Example 3 is
column-structured and minimal. If string 011010 is added to (3), then algorithm
(3) will give the column-structured model in Fig 3(a). However, the model in
Fig 3(b) is smaller. ��

0 0

1 1

0 1

0 0

0 1

1 0

0 0

1 1

1 0

0 0

1 1

0 0

0 1

1 0

0 0

1 1

0 1 1 0 1 0

Fig. 3. (a) A column-structured fragmentation model (b) A smaller model

The tilings given by the column-wise approach can further be improved by
applying local transformations. The transformations use the following basic step.
Assume that our current tiling has adjacent tiles (A, h, k − 1) and (B, k, r). We
may replace these tiles by the tiles

(A ∩B, h, r),
(A \B, h, k − 1),
(B \A, k, r),

and the tiling stays uniform and covers still the entire D. The replacement
operation has no effect if row-set A ∩ B is empty. Otherwise it changes the
structure of the tiling. If A = B, the number of tiles is reduced by one; if A ⊆ B
or B ⊆ A, the number stays the same; and if A ∩ B, A \ B and B \ A are all
non-empty, the number increases by one.

Given any tiling T we can improve it by the following iterative reduction
rule: apply the above local transformation on any pair of tiles (A, h, k − 1) and
(B, k, r) such that A ⊆ B or B ⊆ A (i.e., transformation does not increase
the number of tiles). Repeat this until the local transformation is not any more
applicable. It is easy to see that the process stops in O(mn) iterations. Note
that the seemingly useless transformation steps that do not make the number
of tiles smaller are indirectly helpful: they make the tiles narrower (and longer)
and hence may create possibility for true size reduction in the next step.

There are two possible ways to include the reduction step into algorithm
(3). On can apply it only on the final result of (3). This would, for example,

168 Mikko Koivisto, Pasi Rastas, and Esko Ukkonen

improve the tiling in Fig 3(a) into that in Fig 3(b). Other possibility is to ap-
ply the reduction rule also on the intermediate tiling obtained for each D(1, j)
during algorithm (3) and to use the reduced tiling in subsequent computation.
Sometimes this strategy will give better results than the previous one.

There is also another local transformation that makes the tiles longer and
narrower without reducing the number of tiles. This transformation eliminates
certain loop-like structures from the tiling, defined as follows. The inclusion
graph of a tiling T at j is a bipartite graph which has as its nodes all tiles (A, h, k)
and (A′, h′, k′) such that k = j − 1 and h′ = j and as its (undirected) arcs all(
(A, h, j − 1), (A′, j, k′)

)
such that row-set intersection A ∩A′ is not empty. A

connected component of this graph is a simple loop if it contains as many nodes
as arcs. In a simple loop every node has degree 2 (i.e., two arcs are adjacent to
a node). The number of tiles in a simple loop equals the number of their non-
empty pairwise row-set intersections. But this means that applying our local
transformation on all such pairs will keep the number of tiles unchanged. Hence
the loop-removal transformation can safely be added to the local transformations
one should apply to make the tiling smaller.

Summarized, we get an optimization algorithm that combines dynamic pro-
gramming and local transformations. It finds a local optimum with respect to
the local transformations. Running-time is polynomial in the size of D.

5 Conclusion

We introduced two simple language–generating systems inspired by the recom-
bination mechanism of the nature. For the model reconstruction problem we de-
lineated some initial results while many questions remained open, most notably
the complexity status and approximability of the minimal model reconstruction.
Probabilistic generalizations of our models are another interesting direction for
further study.

References

1. Creighton H. and McClintock B.: A correlation of cytological and genetical crossing-
over in Zea mays. PNAS 17 (1931), 492-497

2. Crochemore, M. and Rytter, W.: Jewels of Stringology. World Scientific 2002
3. Daly, M., Rioux, J., Schaffner, et al.: High-resolution haplotype structure in the

human genome. Nature Genetics 29 (2001), 229–232
4. Koivisto, M., Perola, M., Varilo, et al.: An MDL method for finding haplotype

blocks and for estimating the strength of haplotype block boundaries. In: Pacific
Symposium on Biocomputing (PSB2003), pp. 502–513. World Scientific 2003

5. Patil, N., Berno, A. and Hinds, D.A. et al.: Blocks of limited haplotype diversity
revealed by high-resolution scanning of human chromosome 21. Science 294 (2001),
1719–1723

6. Salomaa, A.: Jewels of Formal Language Theory. Computer Science Press 1981
7. Sevon, P., Ollikainen, V. and Toivonen, H.T.T.: Tree pattern mining for gene map-

ping. Information Sciences (to appear)

Recombination Systems 169

8. Ukkonen, E.: Finding founder sequences from a set of recombinants. In: Algorithms
in Bioinformatics (WABI 2002), LNCS 2452, pp. 277–286. Springer 2002

9. Zhang, K., Deng, M., Chen, T., et al.:A dynamic programming algorithm for hap-
lotype block partitioning. PNAS 99 (2002), 7335–7339

Algebraic Aspects of Parikh Matrices

Alexandru Mateescu

Faculty of Mathematics, University of Bucharest
Academiei, 14, Bucharest, Romania

alexmate@pcnet.ro

Abstract. This paper contains algebraic aspects of Parikh matrices. We
present new, but also some old results, concerning this topic. It is proved
that in some cases the set of Parikh matrices is a noncommutative semir-
ing with a unit element. Also we prove that the set of Parikh matrices is
closed under the operation of shuffle on trajectories and thus it is closed
under many other operations. It is presented also the notion of extended
Parikh matrix that it is an extension of the notion of the Parikh matrix.
The paper contains also a number of open problems.

1 Introduction

The Parikh vector is an important notion in the theory of formal languages.
This notion was introduced in [11]. One of the important results concerning this
notion is that the image by the Parikh mapping of a context-free language is
always a semilinear set. (For details and ramifications, see [14].) The basic idea
behind Parikh vectors is that properties of words are expressed as numerical
properties of vectors. However, much information is lost in the transition from
a word to a vector.

In this paper we introduce a sharpening of the Parikh vector, where somewhat
more information is preserved than in the original Parikh vector. The new notion
is based on a certain type of matrices. All other entries above the main diagonal
contain information about the order of letters in the original word. All matrices
are triangular, with 1’s on the main diagonal and 0’s below it.

We introduce also the notion of extended Parikh matrix.
Two words with the same Parikh matrix always have the same Parikh vector,

but the converse is not true. The exact meaning of the entries in a Parikh
matrix is given below in Theorem 1. Our second main result, Theorem 2, shows
an interesting interconnection between the inverse of a Parikh matrix and the
Parikh matrix of the mirror image.

We remind some basic notations and definitions. The set of all nonnegative
integers is denoted by N . Let Σ be an alphabet. The set of all words over Σ is
Σ∗ and the empty word is λ. If w ∈ Σ∗ then |w| denotes the length of w.

We very often use “ordered” alphabets. An ordered alphabet is an alphabet
Σ = {a1, a2, . . . ak} with a relation of order (“<”) on it. If we have a1 < a2 <
· · · < ak, then we use the notation

Σ = {a1 < a2 < · · · < ak}.

J. Karhumäki et al. (Eds.): Theory Is Forever (Salomaa Festschrift), LNCS 3113, pp. 170–180, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Algebraic Aspects of Parikh Matrices 171

Let a ∈ Σ be a letter. The number of occurrences of a in a word w ∈ Σ∗ is
denoted by |w|a. Let u, v be words over Σ. The word u is a scattered subword of v
if there exists a word t such that v ∈ u t, where denotes the shuffle operation.
We now introduce a notation very important in our subsequent considerations.

If u, v ∈ Σ∗, then the number of occurrences of u in v as a scattered subword
is denoted by |v|scatt−u. For instance,

|acbbb|scatt−ab = 3, |acbabb|scatt−ab = 5 and |aabbbc|scatt−abc = 6.

Thus, partially overlapping occurrences of a word as a scattered subword are
counted as distinct occurrences. The number |v|scatt−u is denoted as a binomial
coefficient in [13].

Let Σ = {a1 < a2 < · · · < ak} be an ordered alphabet. The Parikh vector
Ψ : Σ∗ → Nk, is defined by

Ψ(w) = (|w|a1 , |w|a2 , . . . , |w|ak
).

The Parikh vector of w is (|w|a1 , |w|a2 , . . . , |w|ak
). Note that the Parikh vector is

also a mapping Ψ that is a morphism from the monoid (Σ∗, ·, λ) to the monoid
(Nk,+, (0, 0, . . . , 0)).

The mirror image of a word w ∈ Σ∗, denoted mi(w), is defined as: mi(λ) = λ
and mi(b1b2 . . . bn) = bn . . . b2b1, where bi ∈ Σ, 1 ≤ i ≤ n.

The reader is referred to [12] as a comprehensive treatment on formal lan-
guages and diverse background material. The most fundamental applications and
interconnections of Parikh vectors with language theory are presented in [14].

2 Parikh Matrices and Extended Parikh Matrices

In this paper we consider “triangle” matrices. A triangle matrix is a square
matrix M = (mi,j)1≤i,j≤k, such that mi,j ∈ N , for all 1 ≤ i, j ≤ k, mi,j = 0, for
all 1 ≤ j < i ≤ k, and, moreover, mi,i = 1, for all 1 ≤ i ≤ k.

The set of all triangle matrices is denoted by M. The set of all triangle
matrices of dimension k ≥ 1 is denoted by Mk. Clearly, Mk constitutes a monoid
under matrix multiplication.

Now we introduce the main notion of this paper.

Definition 1. Let Σ = {a1 < a2 < · · · < ak} be an ordered alphabet, where
k ≥ 1. The Parikh matrix, denoted ΨMk

, is the morphism:

ΨMk
: Σ∗ →Mk+1,

defined by the condition: if ΨMk
(aq) = (mi,j)1≤i,j≤(k+1), then for each 1 ≤ i ≤

(k+ 1), mi,i = 1, mq,q+1 = 1, all other elements of the matrix ΨMk
(aq) being 0.

The notion of Parikh matrix was introduced in [6] and studied in [7, 8].
The Parikh matrix is not injective. One of the major open problems is to

characterize non-injectivity, that is, to provide some natural conditions for two

172 Alexandru Mateescu

words to possess the same Parikh matrix. This problem is closely linked with
the fundamental problem about the information content of a Parikh matrix: how
much does the Parikh matrix tell about a word?

It was brought to our attention by one of the referees that the term Parikh
matrix was used in [10] for the growth matrix of a morphism (or a D0L system).

Now we present the notion of extended Parikh matrix. This important notion
was introduced in [15].

Definition 2. Let Σ be an alphabet and u = b1 . . . b|u| be a word in Σ∗ (bi ∈ Σ
for all 1 ≤ i ≤ |u|). The extended Parikh matrix induced by the word u over
the alphabet Σ (shortly, the u-Parikh matrix), denoted ΨΣ,u, is the monoid
morphism

ΨΣ,u : (Σ∗, ·, λ)→ (M|u|+1, ·, I|u|+1),

defined by the condition: if a ∈ Σ and ΨΣ,u(a) = (mi,j)1≤i,j≤(|u|+1), then:

mi,j =

⎧⎨⎩1 if j = i
δbi,a if j = i+ 1
0 otherwise

where δa,b is the Kronecker Symbol regarding letters, that is

δa,b =
{

1, if a = b
0, if a �= b

In the notation ΨΣ,u, Σ has to be mentioned because u can be considered
over any alphabet which contains its letters, and we need to know the context
we are working in.

If Σ is known, then we will use the notation Ψu for ΨΣ,u, especially in proofs,
for reasons of simplicity.

It is clear that if the symbol a ∈ Σ doesn’t occur in u, then ΨΣ,u(a) = I|u|+1.
Let u ∈ Σ∗. We say that M ∈ M|u|+1 is an extended Parikh matrix induced

by u if there exists a word w ∈ Σ∗ such that M = ΨΣ,u(w). Generally, we say
that M ∈ Mk+1 is a Parikh matrix induced by a word if there exists a word
u ∈ Σ∗ such that |u| = k and M is a Parikh matrix induced by u.

It’s easy to see that the Parikh matrix can be obtained as a particular case
of this definition, when u contains all the symbols in Σ only once. The ordering
of the alphabet is then given by the order in which the symbols appear in u.

For example, if Σ = {b1 < b2 < . . . < bk} is an ordered alphabet and u ∈ Σ∗,
u = b1b2 . . . bk, then it can be easily seen that for all a ∈ Σ, ΨΣ,k(a) = ΨΣ,u(a).
It follows that for all words w ∈ Σ∗,

ΨΣ,k(w) = ΨΣ,u(w).

Similarly, it follows that for all words w ∈ Σ∗,

ΨΣ◦,k(w) = ΨΣ,mi(u)(w).

Algebraic Aspects of Parikh Matrices 173

Let us now give an example of an u-Parikh matrix computation. Let Σ =
{a, b} and u = aba. We will compute ΨΣ,u(abba).

We have that ΨΣ,u(abba) = ΨΣ,u(a)ΨΣ,u(b)ΨΣ,u(b)ΨΣ,u(a), which leads to:

ΨΣ,u(abba) =

⎛⎜⎜⎝
1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1

⎞⎟⎟⎠
⎛⎜⎜⎝

1 0 0 0
0 1 1 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎠
⎛⎜⎜⎝

1 0 0 0
0 1 1 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎠
⎛⎜⎜⎝

1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1

⎞⎟⎟⎠ =

⎛⎜⎜⎝
1 2 2 2
0 1 2 2
0 0 1 2
0 0 0 1

⎞⎟⎟⎠
3 About the Entries of a Parikh Matrix

In this section we characterize the entries of the Parikh matrix. We first introduce
some notation that will be applied in our first theorem. Recall also the notation
|v|scatt−u defined in Section 1.

Consider the ordered alphabet Σ = {a1 < a2 < · · · < ak}, where k ≥ 1. We
denote by ai,j the word aiai+1 . . . aj , where 1 ≤ i ≤ j ≤ k.

We are now ready to prove the basic property of the Parikh matrix.

Theorem 1. Let Σ = {a1 < a2 < · · · < ak} be an ordered alphabet, where
k ≥ 1, and assume that w ∈ Σ∗. The matrix ΨMk

(w) = (mi,j)1≤i,j≤(k+1), has
the following properties:

(i) mi,j = 0, for all 1 ≤ j < i ≤ (k + 1),
(ii) mi,i = 1, for all 1 ≤ i ≤ (k + 1),
(iii) mi,j+1 = |w|scatt−ai,j , for all 1 ≤ i ≤ j ≤ k.

Corollary 1. The matrix ΨMk
(w) has as the second diagonal (i.e., the vector

(m1,2,m2,3, . . . ,mk,k+1)) the Parikh vector of w, i.e., (m1,2,m2,3, . . . ,mk,k+1) =
(|w|a1 , |w|a2 , . . . , |w|ak

).

Comment The above results are not true for the extended Parikh matrix.
One can easily find all this information as for instance the Parikh vector by a
simple method.

As already pointed out, the Parikh matrix gives more information about a
word than the classical Parikh vector, although the Parikh matrix is still not
injective. Injectivity would of course mean that the information given by Parikh
matrices is complete. This would be more than one can reasonably hope for: one
cannot expect that words could be expressed as matrices in this fashion, which
would give all information in a simple numerical form.

So far very little is known about sets of Parikh matrices associated to lan-
guages belonging to a fixed family such as the families in the Chomsky hierarchy.
The following remark shows that the semilinearity result of context-free lan-
guages does not carry over to sets of matrices. Results concerning semilinearity
and Parikh matrices are in [2]. The notions of slender and Parikh slender lan-
guages are studied in [3–5]. Results about the injectivity of Parikh mapping can
be found in [1].

174 Alexandru Mateescu

Remark 1. Consider the ordered alphabet {a < b} and the context-free language
L = {anbn|n ≥ 1}. Clearly,

ΨM2(a
nbn) =

⎛⎝1 n n2

0 1 n
0 0 1

⎞⎠
Hence ΨM2(L) cannot be a semilinear set (for any reasonable extension of the
definition of semilinearity to matrices).

Clearly, every triangle matrix is not a Parikh matrix of some word. For in-
stance, the matrix ⎛⎝1 2 7

0 1 3
0 0 1

⎞⎠
is not a Parikh matrix. This follows because ab occurs as a scattered subword at
most 6 times in a word with the Parikh vector (2,3).

The product of the entries in the Parikh vector constitutes an upper bound
for the entry m1,k+1. Thus, the size of the entry m1,3 in Remark 1 is maximal.
Whether or not a given triangle matrix is a Parikh matrix is clearly a decidable
question.

4 On the Inverse of Parikh Matrices

We investigate interrelations between the inverse of a Parikh matrix associated to
a word w and the Parikh matrix of mi(w), the mirror image of w. Clearly, the set
of all triangle matrices of order k ≥ 2 with integer entries is a noncommutative
group with respect to multiplication, the unit element being the unit matrix of
order k. Consequently, for each Parikh matrix A, there exists the inverse matrix
A−1.

Definition 3. Let Σ = {a1 < a2 < · · · < ak} be an ordered alphabet and
let w ∈ Σ∗ be a word. Assume that the Parikh matrix of w is ΨMk

(w) =
(mi,j)1≤i,j≤k+1. The alternate Parikh matrix of w, denoted ΨMk

(w), is the ma-
trix (m′

i,j)1≤i,j≤k+1, where m′
i,j = (−1)i+jmi,j, for all 1 ≤ i, j ≤ k + 1.

Observe that the mapping ΨMk
(w) is a morphism ofΣ∗. For the Parikh vector

Ψ and for every word w, Ψ(w) = Ψ(mi(w)). However, for the Parikh matrix
the situation is completely different. The next theorem reveals the interrelation
between the inverse of the Parikh matrix of a word w and the alternate Parikh
matrix of the mirror image of w.

Theorem 2. Let Σ = {a1 < a2 < · · · < ak} be an ordered alphabet and let
w ∈ Σ∗ be a word. Then:

[ΨMk
(w)]−1 = ΨMk

(mi(w)).

Algebraic Aspects of Parikh Matrices 175

Observe that Theorem 2 provides a very simple method to compute the
inverse of a Parikh matrix. One can also apply it directly to matrices: inverses
of matrices of a certain type can be computed in this way.

As an example, consider the ordered alphabet Σ = {a < b < c} and assume
that w = cbbaa. Then

ΨM3(cbbaa) =

⎛⎜⎜⎝
1 2 0 0
0 1 2 0
0 0 1 1
0 0 0 1

⎞⎟⎟⎠
Since mi(cbbaa) = aabbc, we have by Theorem 2:

[ΨM3(cbbaa)]
−1 = ΨM3(aabbc) =

=

⎛⎜⎜⎝
1 −2 4 −4
0 1 −2 2
0 0 1 −1
0 0 0 1

⎞⎟⎟⎠
A special relation between |w|scatt−ai,j and |mi(w)|scatt−ai,j is obtained in

the next corollary. In the statement the last vertical bars stand for the absolute
value.

Corollary 2. Let Σ = {a1 < a2 < · · · < ak} be an ordered alphabet and let w ∈
Σ∗ be a word. Assume that the Parikh matrix of w is ΨMk

(w) = (mi,j)1≤i,j≤k+1,
and that [ΨMk

(w)]−1 = (m′
i,j)1≤i,j≤k+1. Then |mi(w)|scatt−ai,j = |(m′

i,j+1)| for
all 1 ≤ i, j ≤ k.

We consider now another method to compute the inverse of a Parikh matrix.
We begin with some further definitions and notations.

Let (A,<) be an ordered set. The dual order of the order <, denoted <◦, is
defined as:

a <◦ b iff b < a.

Let Σ = {a1 < a2 < · · · < ak} be an ordered alphabet. The dual ordered
alphabet, denoted Σ◦, is Σ◦ = {ak < ak−1 < · · · < a1}.

Consider the ordered alphabet Σ = {a1 < a2 < · · · < ak} and let w ∈ Σ∗ be
a word. The Parikh matrix associated to w with respect to the dual order on Σ
is denoted by ΨMk,◦(w).

Let v = (v1, v2, . . . , vn) be a vector. The reverse of v, denoted v(rev), is the
vector v(rev) = (vn, vn−1, . . . , v1).

Now we introduce the notion of a reverse of a triangle matrix. Let M =
(mi,j)1≤i,j≤n be a triangle matrix. The reverse of M , denoted M (rev), is the
matrix M (rev) = (m′

i,j)1≤i,j≤n, where m′
i,j = mn+1−j,n+1−i, for all 1 ≤ i < j ≤

n. (The entries on and below the main diagonal are the same in M and M (rev).)
Note that M (rev) is also a triangle matrix. An easy way to obtain M (rev) is

to reverse in M all diagonals that are parallel to the main diagonal. For instance,

176 Alexandru Mateescu

If M =

⎛⎜⎜⎝
1 2 3 7
0 1 4 5
0 0 1 6
0 0 0 1

⎞⎟⎟⎠ then M (rev) =

⎛⎜⎜⎝
1 6 5 7
0 1 4 3
0 0 1 2
0 0 0 1

⎞⎟⎟⎠
The reader can easily verify the following proposition. (Observe that Defini-

tion 3 can be immediately extended to concern arbitrary matrices A.)

Proposition 1. Let A,B be two triangle matrices of the same dimension. Then

(i) [A(rev)](rev) = A.

(ii) (AB)(rev) = B(rev)A(rev).

(iii) A = A.

(iv) AB = A B.

The next theorem gives another method of computing the inverse of a Parikh
matrix.

Theorem 3. Let Σ = {a1 < a2 < · · · < ak} be an ordered alphabet and let
w ∈ Σ∗ be a word. Then

[ΨMk
(w)]−1 = [ΨMk,◦(w)](rev).

The above Theorem 3 provides a simpler method to compute the inverse
of a Parikh matrix. Here we have to reverse a matrix that is of a fixed size
(card(Σ) + 1), whereas in the case of Theorem 2 we have to reverse the word w
that can be arbitrarily long.

From Theorems 2 and 3 we deduce:

Corollary 3. Let Σ = {a1 < a2 < · · · < ak} be an ordered alphabet and let
w ∈ Σ∗ be a word. Then:

ΨMk
(mi(w)) = ΨMk,◦(w)(rev).

The subsequent final observation concerning the functions introduced is rather
obvious. Consider the following four functions from Mk to Mk: the identity I, the
mapping − of A to A, the mapping (rev) of A to A(rev) and the mapping (rev)
of A to A

(rev)
. Then these four functions together with the operation of compo-

sition constitute a group and, moreover, this is the well-known Four-Group of
Klein.

Comment Note that the above two methods to compute the inverse of a
Parikh matrix does not work in the case of the extended Parikh matrix.

Algebraic Aspects of Parikh Matrices 177

5 Some Algebraic Properties

Next theorem is a direct consequence of the definition of Parikh matrix.

Theorem 4. The entries mi,j+1, 1 ≤ i < j ≤ k in a Parikh matrix ΨMk
(w)

satisfy the inequality

mi,j+1 ≤ mi,j ·mi+1,j+1.

Concerning the minors of a Parikh matrix we can prove that:

Theorem 5. The value of each minor of an arbitrary Parikh matrix is a non-
negative integer.

Comment The above result is true also for extended Parikh matrices.

The following general inequality is a consequence of (extended) Parikh ma-
trices.

Theorem 6. The inequality |w|xyz|w|y ≤ |w|xy |w|yz holds for arbitrary words
w, x, y, z.

A generalization of the above inequality is:

Theorem 7. Consider an integer t and let w, x, y1, y2, . . . yt, z be arbitrary words.
Then

|w|y1 . . . |w|yt |w|xy1...ytz ≤ |w|xy1 |w|y1y2 . . . |w|yt−1yt |w|ytz.

Next result concerns equality between sums of terms of the form |w|x.

Theorem 8. The equality

|w|x1 + |w|x2 + . . . |w|xn = |w|y1 + |w|y2 + . . . |w|ym

is decidable for all words w, x1, x2, . . . xn, y1, y2, . . . ym.

Open Problem It is not known the decidability of the inequality:

|w|x1 + |w|x2 + . . . |w|xn ≤ |w|y1 + |w|y2 + . . . |w|ym

where w, x1, x2, . . . xn, y1, y2, . . . ym are arbitrary words.

178 Alexandru Mateescu

6 Algebraic Structures and Other Operations

Let k be a positive integer and denote by PMk the set of all Parikh matrices of
dimension k. The set of all Parikh matrices is denoted by PM.

We define a special type of sum between Parikh matrices, denoted by ⊕.
If A and B are Parikh matrices then the sum A⊕B = C where C is obtained

as the usual sum of matrices except that all elements on the main diagonal of C
have by definition value 1.

Theorem 9. Let Σ be an alphabet with card(Σ) = k ≤ 2. Then, if A and B
are Parikh matrices from PMk, then A⊕B is also a Parikh matrix.

Proof For k = 1 the result is trivial. Assume now that k = 2 and let x
be a preimage of A and y a preimage of B. Assume that pq = c1,3 We define
z = btapbqar, where t+ q = |x|b + |y|b and p+ r = |x|a + |y|a and pq = c1,3. One
can verify that z is a preimage of C.

As a consequence we obtain:

Theorem 10. Both (PM, ·,⊕, 0, I1) and (PM, ·,⊕, 0, I1) are semirings.

Comment. The above results are not true if card(Σ) ≥ 3 For instance if
Σ = {a, b, c} and consider x = abc and y = b, then the partial sum of the
corresponding Parikh matrices is not a Parikh matrix.

Open Problem For the time being we don’t know under what conditions
the partial sum of two Parikh matrices continue to be a Parikh matrix.

The last part of this section is dedicated to closure properties of PMk and of
PM at certain operations. We start recalling the operation of shuffle on trajec-
tories. This notion was defined in [9].

Consider the alphabet V = {r, u}. We say that r and u are versors in the
plane: r stands for the right direction, whereas u stands for the up direction.

Definition 4. A trajectory is an element t ∈ V ∗.

We will consider also sets T of trajectories, T ⊆ V ∗.
Let Σ be an alphabet and let t be a (finite) trajectory, let d be a versor,

d ∈ V , let α, β be two (finite) words over Σ.

Definition 5. The shuffle of α with β on the trajectory dt, denoted α dt β, is
recursively defined as follows:

if α = ax and β = by, where a, b ∈ Σ and x, y ∈ Σ∗, then:

ax dt by =

{
a(x t by), if d = r,

b(ax t y), if d = u.

if α = ax and β = λ, where a ∈ Σ and x ∈ Σ∗, then:

ax dt λ =

{
a(x t λ), if d = r,

∅, if d = u.

Algebraic Aspects of Parikh Matrices 179

if α = λ and β = by, where b ∈ Σ and y ∈ Σ∗, then:

λ dt by =

{
∅, if d = r,

b(λ t y), if d = u.

Finally,

λ t λ =

{
λ, if t = λ,

∅, otherwise.

Comment. Note that if |α| �= |t|r or |β| �= |t|u, then α t β = ∅.
If T is a set of trajectories, the shuffle of α with β on the set T of trajectories,

denoted α T β, is:
α T β =

⋃
t∈T

α t β.

The above operation is extended to languages over Σ, if L1, L2 ⊆ Σ∗, then:

L1 T L2 =
⋃

α∈L1,β∈L2

α T β.

Consider the following example. Let α and β be the words α =
a1a2a3a4a5a6a7a8, β = b1b2b3b4b5 and assume that t = r3u2r3ururu. The shuffle
of α with β on the trajectory t is:

α t β = {a1a2a3b1b2a4a5a6b3a7b4a8b5}.

Comment. Note that the operation of shuffle on trajectories can be extended
for finite strings of matrices, for finite sequences of finite graphs, etc.

For instance in the above example the letters ai can be square matrices and
the catenation to be the multiplication of matrices.

Theorem 11. Both PMk and PM are closed at the operation of shuffle on tra-
jectories.

Consequently we obtain that

Theorem 12. Both PMk and PM are closed at the operations of multiplication,
shuffle, insertion, shuffle literal, bicatenation, etc.

7 Conclusion

We presented the most important results and problems concerning Parikh ma-
trices. A problem area we have not discussed at all in this paper concerns sets of
Parikh matrices and families of such sets, analogous to the family of semilinear
sets of Parikh vectors.

180 Alexandru Mateescu

References

1. Atanasiu, A,. Mart́ın-Vide, C. and Mateescu, A., On the injectivity of the Parikh
matrix mapping. Submitted for publication (2000).

2. Harju, T., Ibarra, O., Karhumäki, J. and Salomaa, A., Some decision problems
concerning semilinearity and commutation. To appear in J. Comput. System Sci.
(2002).

3. Honkala, J., On slender languages. EATCS Bulletin 64 (1998), 145–152.
4. Honkala, J., On Parikh slender languages and power series. J. Comput. System

Sci. 52 (1996), 185–190.
5. Ilie, L., Rozenberg, G., and Salomaa, A., A characterization of poly-slender

context-free languages. Theor. Inform. Appl. 34 (2000), 77–86.
6. Mateescu, Alexandru, Salomaa, Arto, Salomaa, Kai, and Yu, Sheng, A Sharpening

of the Parikh Mapping, RAIRO - Theoretical Informatics and Applications 35,
551-564 (2001)

7. Mateescu, Alexandru, Salomaa, Arto, Salomaa, Kai and Yu, Sheng, On an exten-
sion of the Parikh mapping, TUCS Technical Report No 364

8. Mateescu, Alexandru, Salomaa, Arto and Yu, Sheng, Subword Histories and
Parikh Matrices, TUCS Technical Report No 442, February 2002.

9. A. Mateescu, G. Rozenberg and A. Salomaa, “Shuffle on Trajectories: Syntactic
Constraints”, Theoretical Computer Science, TCS, Fundamental Study, 197, 1-2,
(1998) 1-56.

10. Pansiot, J.J., A decidable property of iterated morphisms. Springer Lecture Notes
in Computer Science 104 (1981), 152–158.

11. Parikh, R.J., On context-free languages. J. Assoc. Comput. Mach., 13 (1966)
570–581.

12. Rozenberg, G. and Salomaa, A. (eds.), Handbook of Formal Languages 1-3.
Springer-Verlag, Berlin, Heidelberg, New York (1997).

13. Sakarovitch, J. and Simon, I., Subwords. In M. Lothaire: Combinatorics on Words,
Addison-Wesley, Reading, Mass. (1983) 105–142.

14. Salomaa, A., Formal Languages. Academic Press, New York (1973).
15. Şerbănuţă, Traian-Florin, Extending Parikh Matrices Theoretical Computer Sci-

ence, jauary, 2004.

On Distributed Computing

on Elliptic Curves

Tommi Meskanen1,2, Ari Renvall1, and Paula Steinby1,2

1 Department of Mathematics, University of Turku
20014 Turku, Finland

2 Turku Centre for Computer Science
20520 Turku, Finland

Abstract. Let C be a device performing computations of a crypto-
graphic protocol. Assume C to have limited computing power, but to
have access to another device A with superior capacities. This setting
could occur, for instance, with a smart card C and a mobile phone A.
We consider the situation where C is supposed to calculate the basic
operation of elliptic curve cryptography: the scalar multiplication of a
point P on a curve. We investigate whether C’s performance could be
improved by means of distributed computation; that is, whether C could
exploit A’s computing power, without compromising the safety of the
procedure. We set up three models of computation, varying the demand
for C’s trust on A’s honesty.

1 Arithmetic on Elliptic Curves

Denote by Fq the field with q elements. If the field is binary, then the (non-
supersingular) elliptic curve E(Fq) over Fq is defined as the set of points

E(Fq) = {(x, y) | y2 + xy = x3 + ax2 + b} ∪ O (a, b ∈ Fq, b �= 0),

where O is the point at infinity. (In non-binary fields the term ax2 must be
replaced by ax and the condition 4a3 + 27b2 �= 0 should hold). If the group
operation is suitably defined, then E(Fq) is an Abelian group with O as the
neutral element. It is customary to adopt additive notation, so we denote the
group operation by +. This addition can be performed using the basic arithmetic
operations of the base field. Below we give the equations for a binary field. Let
P = (x, y) �= O be a point on the curve. Then

−P = (x, x + y)
2P = (u, v)

= (θ2 + θ + a, θ(x + u) + u+ y),

where θ = x +
y

x
. Moreover, if also Q = (x′, y′) �= O, Q �= P and Q �= −P (i.e.

x �= x′), then

P +Q = (u′, v′)
= (θ′2 + θ′ + a+ x+ x′, θ′(x+ u′) + u′ + y),

J. Karhumäki et al. (Eds.): Theory Is Forever (Salomaa Festschrift), LNCS 3113, pp. 181–191, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

182 Tommi Meskanen, Ari Renvall, and Paula Steinby

where θ′ =
y + y′

x+ x′
.

Elliptic curve cryptosystems are public key cryptosystems [Sal]. In particu-
lar they are El Gamal based systems [ElG], hence their security is based on the
difficulty of the discrete logarithm problem in the group (E(Fq),+). More specif-
ically, EC based systems exploit the fact that given points P and kP (for some
unknown integer k) on a curve E(Fq), it is practically impossible to calculate k.
The operation of computing kP = P + . . .+ P is called scalar multiplication of
the point P .

The users of an elliptic curve cryptosystem all share the same domain pa-
rameters (m, f(x), a, b, G, r). Of these m and f(x) fix the underlying field and
the presentation of field elements, a and b define the curve and G is a point on
the curve of order r. The private key of a user is then simply an integer s < r,
and the corresponding public key is the point Q = sG.

For an extensive study on elliptic curves in cryptography we refer to [BSS].
Here, as an example, we describe the ECDSA signature algorithm, which is
included in all ECC standards, see for example [P1363,X9.62]. Let s be A’s
private key and Q the public key. A signature for a message m is then computed
as follows.

Signature generation:

1. A computes a representative h(m) of the message, where h is a hash function
agreed beforehand (SHA-1, for example).

2. A selects a random integer k, computes the point P = kG and converts the
x-coordinate of it to an integer c.

3. A’s signature for the message m is the pair (c, d), where d = k−1(h(m)+ sc)
(mod r).

A verifier B can check the validity of a signature (c, d) for a message m using
A’s public key Q = sG:

Signature verification:

1. B computes the hash value h(m).
2. B computes the point R = d−1(h(m)G+ cQ) and converts the x-coordinate

to an integer c′

3. If c = c′ then B accepts the signature.

It is an easy task to verify that if both A and B follow their algorithms then
P = R, and thus also c = c′:

R = d−1(h(m)G + cQ) = d−1(h(m) + sc)G = kG = P.

In ECDSA (and in fact in any cryptographic primitive employing elliptic
curves), scalar multiplication is the most time consuming operation. This moti-
vates us to concentrate on how to securely and efficiently distribute the compu-
tation of kP .

On Distributed Computing on Elliptic Curves 183

2 Scalar Multiplication of a Point

In the following we introduce our favourite algorithm for scalar multiplication:
the Fixed Base Windowing algorithm (FBW for short), see [MOV]. Slightly mod-
ified, we find it the most suitable for efficient and secure calculation of kP . FBW
seems recommendable even in the cases where the base P is not fixed. The FBW
algorithm is a constant time algorithm where all point doublings occur in the
precomputation, and all point additions during the actual computation. This fea-
ture diminishes the chance of a successful side-channel attack. These are attacks
against specific implementations of some algorithm, which collect information
by measuring e.g. time or power consumption of the device when it is processing
some secret data. For more information on such attacks, see [Koc,KJJ].

2.1 The FBW Algorithm

The Fixed Base Windowing algorithm is a general exponentiation algorithm, as
it can be applied in any group. As the name suggests, it is specially designed for
situations where the base is fixed. A significant part of the computation consists
of constructing a precomputation table T , the contents of which only depends
on the base. If we always have the same base, then it suffices to calculate T just
once and store it for further use. But, if necessary, we can also compute T each
time separately.

Below we present the basic version of FBW. We adopt the notation from
elliptic curves setup.

Let P = (x, y) be a point of order r on some curve E(Fq), and let k be a
positive integer less than r. Our task is to compute the point kP . The idea of the
algorithm is to look at the multiplier k through a “window” of fixed width w. For
notational convenience we assume that the length of k’s binary representation
is n = lw, and we denote k =

∑l−1
i=0 ki2iw, where 0 ≤ ki < 2w. Denote also

Pi = 2iwP (i = 0, 1, . . . , l − 1); hence kP =
∑l−1

i=0 kiPi.

Algorithm 1

Q := P; R := 0; B := 0; For i := 0 To l-1 Do (* precomputation *)
T[i] := Q;
For j := 1 to w Do Q := 2*Q;

For i := 2^w-1 Downto 1 Do (* computation depending on k *)
For j := 0 To l-1 Do
If k[j] = i Then B := B + T[j];

R := R + B;
Return(R)

First part of the algorithm is to generate the precomputation table T [i] = Pi.
Then the product kP is accumulated to R such that each table element T [i] is
included in B when there are ki additions R := R + B left. This sums up to
R =

∑
kiPi = kP . The first part of the algorithm consists of doublings only,

184 Tommi Meskanen, Ari Renvall, and Paula Steinby

whereas there are just additions in the second part. As already mentioned, this is
a strength (compared to, for instance, the traditional double-and-add -algorithm)
against side-channel attacks.

Let us consider our model of distributed computing: when computing the
product kP (with FBW), C takes advantage of A’s computing power. We rec-
ommend C to use A’s assistance with the precomputation only, and the actual
computation to be performed solely by C. There are at least two good reasons
for this. First, if A is used in computations which depend on the coefficient k,
then C has to ask A for something specific. That would bring on a need for du-
plex data transfer. Second, it seems impossible to build a scheme where C would
profit from A’s computation without having to reveal any relevant information
on k.

3 Models of Computation

The main objective of this article is to analyze the benefits of distributed com-
putation when using elliptic curve cryptography. As scalar multiplication is the
basic operation in EC cryptography, and most of the time in any cryptographic
EC operation is spent computing kP , it seems natural to concentrate on it.

Let C be a device to calculate kP . Assume that k is known to C only, whereas
P is public. Suppose that A is another device with superior computing power,
and that A is willing to help C in the computations. For example, C could be a
smart card inserted in a mobile phone A.

We consider three different models.

I A does not participate in the computation at all, so C does everything in-
dependently. Thus, no data needs to be transferred between A and C.

II A is used during the computation, but all data that A provides is checked
by C. No information on k is given to A, so C doesn’t need to trust A.

III A participates in the computations, and C trusts the correctness of all data
A gives to C. If A really is honest, then the data given by C doesn’t reveal
A any information on k.

Model I is included to give the basis for relevant comparisons of the benefits
of the other two models. In I and II the result of C is never incorrect, but in
model III this is not necessarily the case if A cheats. It should also be noted,
that we really cannot make any weaker assumptions on A than we do in model
III. The same information that an honest A may learn is available also to an
eavesdropper listening the traffic between A and C. Moreover, if A learns k, it
could as well do all the calculations by itself, making C useless.

In the following we assume that kP is computed using the Fixed Base Win-
dowing algorithm, and that A is used only in the precomputation (if at all). We
also assume that |k| = n = lw. These choices are motivated by the following
reasons:

On Distributed Computing on Elliptic Curves 185

– Based on our tests, a modification of FBW seems a recommendable choice
for calculating kP , as it combines efficiency with suitability to avoid side-
channel attacks. Information on different exponentiation algorithms can be
found in [Gor,MOV].

– If A helps C during the precomputation, then A can send the required data
without C’s request. On the other hand, if A helps C in calculations de-
pending on k, then first C needs to request some specific data from A. As a
consequence more data needs to be transmitted between the parties. In the
smart-card environment data transmission is relatively slow.

– If C’s help request depends on k, there is always a risk that some informa-
tion on k gets revealed. In our experience it seems difficult to use A during
computations that depend on k.

We represent the complexity of an algorithm as a triple (s,m, i), where s, m and
i stand for the number of squarings, multiplications and inversions of the field
elements, respectively. For example, the complexity of both point doubling and
ordinary point addition on elliptic curves is (1, 2, 1). (We ignore the costs due
to adding field elements, as that is performed by XORing the summands and is
extremely fast.)

3.1 Model I

This is the traditional model, where C needs to do all computations by itself.
Looking at algorithm 1 it is easy to count the complexity. In the precomputation
we need n doublings, so the complexity is (n, 2n, n) = (lw, 2lw, lw). In the actual
computation we need ck = l + 2w − 1 additions. Thus, the total complexity is
(lw + ck, 2(lw + ck), lw + ck).

3.2 Model II

Let us now discuss how C could utilize A’s computing power during the pre-
computation. It seems reasonable to reduce the problem to performing a single
doubling, since computing the table points consists of consecutive doublings. So,
let us look at the situation where A and C need to calculate the point Q = 2P .
We denote P = (x, y) and Q = (u, v).

As A is not trusted, C must be able to check that every piece of information
given by A is correct. Therefore, a precondition for the success of this model is
to find operations such that performing them is more costly than verifying the
results.

In [Knu] it was shown that, under certain conditions, point halving costs less
than point doubling. Thus, one possible idea is that A simply gives C the point
Q = 2P , and C verifies this by checking that 1

2Q = P . However, this approach
has some problems. An efficient point halving algorithm requires relatively much
memory, which is not acceptable in our main application where C is a smart card.
More importantly, if C does have the necessary resources for efficient point halv-
ing, it would be best exploited by using a so-called “halve-and-add” algorithm
(see [Knu]).

186 Tommi Meskanen, Ari Renvall, and Paula Steinby

In the following we present two ideas, both of which are based on a simple
observation: the result of a field inversion is easily verified by performing one field
multiplication. Probably in any implementation of a binary field, multiplication
costs reasonably less than an inversion. Further, let us point out that using the
doubling formula involves computing the value θ = x+ y

x . These facts together
motivate us to suggest a scheme, where A after computing the value of θ hands
it over to C, who first checks its validity and then makes use of it in computing
the coordinates of Q.

Algorithm 2

A→ C θ = x+ y
x

C x(θ + x) = y? (∗ checking θ ∗)
C u = θ2 + θ + a
C v = θ(x + u) + u+ y

Computing the complexity of Algorithm 2 is straightforward. C needs one
multiplication to verify that A has given the correct θ; computing u and v
requires one squaring and a multiplication, respectively. These sum up to (1, 2, 0)
for one doubling and (lw, 2lw, 0) for all precomputation. Altogether, we save time
equal to that needed for lw inversions.

Our second algorithm for model II is based on the idea of representing a
point as a pair (x, θ) instead of (x, y) (where θ = x + y

x). If P = (x, y) ∼ (x, θ)
and Q = 2P = (u, v) ∼ (u, θ′) then, by the doubling formula:

u = θ2 + θ + a

θ′ = u+ vu−1 = u+ (θ(x + u) + u+ y) · u−1

= u+ (θ(x+ u) + u+ x(θ + x)) · u−1

= u+ (u(θ + 1) + x2) · u−1

= θ + u+ 1 + x2u−1

The complexity of one doubling using this method is (1, 2, 1). Thus, there would
be no time savings if C doubled points this way. But if C receives the value
θ′ from A, then C only has to check its validity by making sure that x2 =
u(θ′ + θ+u+1). The cost of the validation operation is (1, 1, 0), and computing
u requires one additional squaring.

Algorithm 3
C u = θ2 + θ + a

A→ C θ′ = u+ vu−1

C x2 = u(θ′ + θ + u+ 1)?

In the computation of kP we need the actual y-coordinate of every wth table
element. Since y = x(θ + x), this costs an additional multiplication per each of
the l table elements. Altogether, the complexity of precomputation will then be
(2lw, lw+ l, 0). We notice that algorithm 3 is more efficient than algorithm 2, if
w squarings in the base field can be computed faster than w− 1 multiplications.

On Distributed Computing on Elliptic Curves 187

Model III

Analyzing this model is trivial. As A is trusted, A can simply give the whole
precomputation table for C, who only needs to do computations depending on
k. Thus C’s total complexity in this case is (ck, 2ck, ck).

It should be noted, however, that this model is quite dangerous. In the fol-
lowing section we consider the risks.

4 What if A Cheats?

In this section we consider what damage can be done if C trusts a cheating A in
our model III above. The obvious consequence is that C’s calculations are then
incorrect, which might be very harmful as such. But the real danger is that the
false result might reveal some secret information.

Assume again that C is trying to compute kP , where k is secret and P is
public. Suppose that A gives C a precomputation table T , and C (trusting A)
computes the point

XT =
l−1∑
i=0

kiT [i]

using the FBW algorithm. The point XT is again public information, so also A
learns it. From A’s point of view k is a uniformly distributed random vari-
able. Theoretically, the information that XT reveals about k is I(XT , k) =
H(XT) − H(XT | k), where H(Y) is the entropy of a random variable Y :
H(Y) =

∑
y∈Y p(y) log2(p(y)). In our case XT is completely determined by k,

thus H(XT | k) = 0 and I(XT | k) = H(XT).

For simplicity, suppose that k is an integer selected uniformly from all integers
of length n = lw: 0 ≤ k < 2n.

Suppose that A has been honest, so the table T is correct. ThenXT = kP and
it is easy to verify that H(XT) = n. In other words, XT completely determines k
(as it should). The problem is that to extract the available information A needs
to compute the discrete logarithm.

On the other hand, assume that A has given C a table consisting of only
one non-zero point T [i]. Then XT = kiT [i] and H(XT) = w. This means that
XT reveals w bits of information about k. Again, to extract this information A
needs to compute the discrete logarithm. But in this case it is trivial, as there
are only 2w alternatives and typically w is very small.

There is a natural generalization of this attack. A can select T to consist
of a “small” number of non-zero points. For example, suppose that T [i0 + i] =
2iw·T [i0] for some i0 and i = 0, . . . , j−1 and the rest T [i] = O. ThenH(XT) = jw
and, if j is small enough, A can learn the secret bits ki0 , . . . , ki0+j−1. The optimal
choice for j depends on A’s computational resources.

The attacks described above can be avoided if C checks that the table ele-
ments T [i] are all non-zero. Unfortunately this is of little help, as we can modify
the attack in so many ways that C cannot possibly rule out all alternatives. For

188 Tommi Meskanen, Ari Renvall, and Paula Steinby

example, A can choose all the table points as a small multiple of some point R.
If T [i] = iR, then XT = (

∑
iki)R. It can be computed that H(XT) ≈ 11, 5 if

n = 160 and w = 4.
From the above it follows that, unless C is absolutely certain that A is honest,

C should avoid our model III.

Let us finally consider a setup somewhere between models II and III. Suppose
that, as in algorithm 2,A gives C the values θ, but C does not verify their validity
(or alternatively verifies only some of them at random). But not even this idea
seems too promising. If A manages to give C two incorrect θ’s in succession,
then A has a good chance to force the table elements T [i] to any point (α, β)
it desires. For example, A could make T to repeat itself by forcing T [l

2] = T [0],
whence T [l

2 + 1] = T [1] and so on. In this case it is easy to compute that
I(XT , k) < n

2 +w. In other words, the security provided by k is roughly halved.
Let us describe how A can cheat. Denote by ϕ(P, θ) the point computed by

algorithm 2 without the verification of θ. Hence, if θ is correct, ϕ(P, θ) = 2P .
Given a starting point P0 = (x, y) and a target point P2 = (α, β), A’s task is
to find such values z and t that ϕ(P1, t) = P2, where P1 = (u, v) = ϕ(P0, z).
Necessarily t should satisfy the equation t2 + t + a = α. Such a t is easily
computed provided that Tr(a + α) = 0. It remains to select z such that the
resulting y-coordinate will be β. Applying the doubling formulae we obtain

β = t(u + α) + α+ v

= t(z2 + z + a+ α) + α+
z(x+ z2 + z + a) + z2 + z + a+ y

= z3 + tz2 + (t+ x+ a+ 1)z + (t(a+ α) + a+ y + α).

Thus, if A can solve z from the equation above, A’s chances for a successful
cheating are good. A’s task is to solve a polynomial equation of third degree in
a binary field. The number of solutions is always either 0, 1 or 3. The following
lemma from [BRS] tells us that the equation has at least one solution with
probability greater than 50%. In the same article an efficient method to calculate
the solution is given.

Lemma. The equation z3 + c1z
2 + c2z + c3 = 0 (ci ∈ F2m) has exactly one

solution in F2m , if and only if Tr((c2+c2
1)

3/2

c3+c1c2
) �= Tr(1).

5 An Example

To get a better understanding of the benefits of distributed computation we
consider a concrete example. Currently a 1024 bit RSA modulus is considered
to provide adequate security for most applications. The same level of security
using elliptic curve cryptography is achieved if the order of the group E(Fq) is
roughly 2160. Then the length of k’s binary representation is (approximately)
160 bits, and, from the point of view of FBW’s efficiency, the optimal size for
the window (w) is 3–5.

On Distributed Computing on Elliptic Curves 189

Thus, assume that C is calculating a point kP on a curve over a field of size
2160, and that an untrusted A helps C (model II). Suppose that C uses the FBW
algorithm with w = 4 and l = 40. To measure the possible time savings we need
to know the relative costs of the basic operations: squaring, multiplication and
inversion on the underlying field. Naturally these figures depend heavily on the
available resources. We consider two different environments.

If C is a personal computer, then (according to our own implementation) one
multiplication takes roughly twice the time required for one squaring, and an
inversion costs approximately four multiplications. Then, in model I, the fastest
way for C to compute the precomputation table for P is to double P repeatedly
using the formula given in the first section. The complexity of it is (1, 2, 1), thus
the relative cost for the whole precomputation is 160 + 2 · 320 + 8 · 160 = 2080.

In model II we shall use algorithm 3, because squaring is cheaper than mul-
tiplication. The complexity of one doubling is then (2, 1, 0), and one additional
multiplication is needed for the l table points. The cost for precomputation is
then 320 + 2 · (160 + 40) = 720. This means that the time required for precom-
putation is cut to roughly one third.

To obtain the total saving we should take into account also the computation
depending on k. This is performed similarly in both models requiring 55 point
additions, and the cost of it is (55+2·110+8·55 = 715). Therefore the calculation
time for kP is approximately halved in model II.

If C is a smart card with hardwired field multiplication, then squaring and
multiplication (which in this case are performed similarly) are really fast com-
pared with inversion. In the following we assume that one inversion takes the
same time as 40 multiplications. In this case it pays to use so-called projective
coordinates instead of the affine coordinates (which we have used so far) to
present points. This follows, since if computations are performed using projec-
tive coordinates, then we can almost completely avoid inversions (with the cost
of some additional squarings and multiplications). To understand what projec-
tive coordinates are we refer to [BSS], here it suffices to present a table for the
complexities of point doubling and point addition using different coordinates.
(In the mixed case the other summand is given in affine, the other in projective
coordinates.)

complexity as (s,m, i)
affine mixed projective

Addition (1, 2, 1) (3, 11, 0) (5, 15, 0)
Doubling (1, 2, 1) – (5, 5, 0)

As we notice, the complexity of one doubling is now (5, 5, 0). The time required
for precomputation is thus 5 · 160 + 5 · 160 = 1600. The table points are then
given in projective coordinates, and the complexity of the remaining 55 point
additions is (15, 5, 0) each. Moreover, the result needs to be converted from
projective coordinates back to affine coordinates, which requires one inversion,
three multiplications and one squaring. This yields to an additional cost of 15 ·

190 Tommi Meskanen, Ari Renvall, and Paula Steinby

55 + 5 · 55 + 1 + 3 + 40 · 1 = 1144, and thus the total cost for computing kP is
2744.

Using model II the most efficient precomputation is performed via affine co-
ordinates and employing algorithm 2. The complexity of one doubling is (1, 2, 0),
which gives 160 + 2 · 160 = 480 for the cost of precomputation. The remaining
55 point additions should again be done using projective coordinates. Of these
additions 40 belong to the mixed category, the rest 15 being purely projective.
This gives a cost of (40 · 3 + 15 · 5)+ (40 · 11+ 15 · 15+3)+40 · 1 = 904, as again
the final result needs to be converted back to affine coordinates. The total cost
is then 1384, which again is about 50% of the cost of model I.

We summarize the results in the table below. It should be remembered that
the times are relative, no comparison between the PC setup and smart card setup
can be done. Also, these figures give only the maximum possible savings with our
methods. We have not included A’s computation times and, more importantly,
the times required for data transfer between A and C. The main application we
have had in mind is a smart card. Unfortunately with the current technology i/o
times to and from the card are too slow to exploit these methods.

precomputation complete computation
compl. cost sav. compl. cost sav.

PC
model I (160, 320, 160) 2080 (215, 430, 215) 2795
model II (320, 200, 0) 720 65% (375, 310, 55) 1435 49%
smart card
model I (800, 800, 0) 1600 (1076, 1628, 1) 2744
model II (160, 320, 0) 480 70% (356, 988, 1) 1384 50%

6 Conclusion

We have shown that in elliptic curve cryptography a device with restricted com-
puting power can exploit external computational resources without jeopardizing
the security. In theory about 50% of the computation times can be saved us-
ing the described methods. We have also considered the dangers of trusting the
external device.

References

[X9.62] ANSI X9.62 Working Draft, Public Key Cryptography for the Financial Ser-
vices Industry: The Elliptic Curve Digital Signature Algorithm, September
1998.

[P1363] IEEE P1363/D3 (Draft version 3), Standard Specifications for Public Key
Cryptography, May 1998.

[BRS] E. R. Berlekamp, H. Rumsey and G. Solomon, On the Solution of Algebraic
Equations over Finite Fields, Information and Control 10 (1967), pp. 553–564

[BSS] I. Blake, G. Seroussi and N. Smart, Elliptic Curves in Cryptography, Cam-
bridge University Press, Cambridge, 1999.

On Distributed Computing on Elliptic Curves 191

[ElG] T. ElGamal, A Public-Key Cryptosystem and a Signature Scheme Based on
Discrete Logarithms, IEEE Trans. Info. Theory, 31, 469–472, 1985.

[Gor] M. D. Gordon, A Survey of Fast Exponentiation Methods, Journal of Algo-
rithms 27 (1998), 129–146.

[Knu] Erik Woodward Knudsen, Elliptic Scalar Multiplication Using Point Halving,
Advances in Cryptology - Asiacrypt’99, LNCS 1716, Springer-Verlag (1999),
pp. 135–149.

[Koc] Paul C. Kocher, Timing Attacks on Implementations of Diffie-Hellman, RSA,
DSS and Other Systems, Proceedings CRYPTO ’96, LNCS 1109, Springer-
Verlag, 1996, pp. 104–113.

[KJJ] P. Kocher, J. Jaffe and B. Jun, Introduction to Differential Power Analysis and
Related Attacks, http://www.cryptography.com/dpa/technical/index.html.

[MOV] A. Menezes, P. van Oorschot and S. Vanstone, Handbook of Applied Cryptog-
raphy, CRC Press, Boca Raton, Florida, 1996.

[Sal] Arto Salomaa, Public-key Cryptography, Springer-Verlag, Berlin, 1990.

On the Formal Modelling of Trust in

Reputation-Based Systems

Mogens Nielsen1,2 and Karl Krukow1,2

1 BRICS�, University of Aarhus, Denmark
{krukow, mn}@brics.dk

2 Supported by SECURE��

Abstract. In a reputation-based trust management system an entity’s
behaviour determines its reputation which in turn affects other entities
interaction with it. We present a mathematical model for trust aimed
at global computing environments which, as opposed to many tradi-
tional trust management systems, supports the dynamics of reputation-
based systems in the sense that trusting relationships are monitored and
changes over time depending on the behaviour of the entities involved.
The main contribution is the discovery that the notion of event struc-
tures, well studied e.g. in the theory of concurrency, can faithfully model
the important concepts of observation and outcome of interactions. In
this setting observations are events and an outcome of an interaction is
a maximal set of consistent events describing what happened. We also
touch upon the problem of transferring trust or behavioural information
between contexts, and we propose a generalised definition of morphism
of event structures as an information-transfer function.

1 Introduction

In the Global Computing (GC) vision very large numbers of networked, mobile,
computational entities interact to fulfill their respective goals. To be successful
in such environments, entities (the terms principal, agent and entity are used
synonymously) must collaborate, must be capable of operating under only partial
information, and security decisions must be made autonomously, as no central
authority is feasible.

The classical trust management approach [1], first introduced by Blaze, Feigen-
baum and Lacy in [2], was proposed as a solution to the inadequacy of traditional
security mechanisms in larger decentralised environments. Roughly, a classical
trust management system deals with deciding the so-called compliance checking
problem: given a request together with a set of credentials, does the request
comply with the local security policy of the provider? The same authors also
� Basic Research in Computer Science funded by the Danish National Research Foun-

dation
�� Authors are supported by SECURE: Secure Environments for Collabo-

ration among Ubiquitous Roaming Entities, EU FET-GC IST-2001-32486
http://secure.dsg.cs.tcd.ie/

J. Karhumäki et al. (Eds.): Theory Is Forever (Salomaa Festschrift), LNCS 3113, pp. 192–204, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

On the Formal Modelling of Trust in Reputation-Based Systems 193

developed tool-support in the form of PolicyMaker [2, 3] and later KeyNote [4]
for handling the trust management problem. In his paper [5], Weeks displayed a
simple mathematical framework, and showed how this framework would instan-
tiate to various existing trust management systems, including KeyNote, SPKI
[6] and some logic based systems (see [5] for details), sometimes even leading to
more efficient algorithms for the compliance checking problem. The framework
expresses a trust management system as a complete lattice (D,≤) of possible
authorisations, a set of principal names P, and a language for specifying so-called
licenses. The lattice elements d, e ∈ D express the authorisations relevant for a
particular system, e.g. access-rights, and d ≤ e means that e authorises at least
as much as d. An assertion is a pair a = 〈p, l〉 consisting of a principal p ∈ P, the
issuer, and a monotone function l : (P → D) → D, called a license. In the sim-
plest case l could be a constant function, say d0, meaning that p authorises d0.
In the general case the interpretation of a is: given that all principals authorise
as specified in the authorisation map, m : P→ D, then p authorises as specified
in l(m). This means that a license such as l(m) = m(A) ∨ m(B) expresses a
policy saying “give the lub of what A says and what B says”. Weeks showed
that a collection of assertions L = 〈pi, li〉i∈I gives rise to a monotone function
Lλ : (P → D) → P → D, with the property that a coherent authorisation map
representing the authorisations of the involved principals is given by the least
fixed point, lfp Lλ.

The ideas on trust management systems seeded a substantial amount of re-
search in the area of security in large distributed systems, but as noted in [7],
which serves as a survey on existing systems anno 2000, the current trust man-
agement solutions do not adequately deal with the dynamic aspects of trust: a
trusting relationship evolves over time and requires monitoring and reevaluation.
In [8, 9] it was argued that while the idea of having mutually referring licenses
resolved by fixed points was good, the Weeks-framework for trust would be too
restrictive in GC environments. One reason is that principals often do not have
sufficient information to specify precise authorisations for all other principals. In
the framework this means that any unknown or only partially known principal is
always assigned the bottom authorisation. The proposed solution was to have the
set T of “authorisations”, here called trust values, equipped with two orderings,
denoted � and �. Here �, called the trust ordering, corresponds to Weeks’ way
of ordering by ”more privilege”, whereas �, called the information ordering, in-
troduces a notion of precision or information. The key idea was that the elements
of the set should embody also various degrees of uncertainty, and then d � e
reflects that e is more precise or contains more information than d. In the sim-
plest of cases the trust values could be just symbolic, e.g. unknown � low � high,
but they might also have more structure, as will become clear in the following
sections. It was shown how least fixed points with respect to the information
ordering, leads to a way of distinguishing an unknown principal from a known
and distrusted one.

194 Mogens Nielsen and Karl Krukow

The notion of reputation-based systems (see e.g. [10–12]) also addresses some
of these issues. In a reputation-based system, an agent’s past behaviour deter-
mines together with local security policies how other agents assign privileges to
that agent, and more generally affects any decisions concerning that agent. The
SECURE project [13, 14] aims at providing a framework for decision-making in
GC environments, based on the notion of trust. The formal model for trust de-
ployed is that of [8, 9], and a particular application defines a triple (T,�,�) of
trust values with the two orderings. In this model, trust exists between princi-
pals, and so for any principals P and Q the trust that P has in Q is modelled as
an element of T . As in the Weeks-framework this value is defined in terms of a
license issued by P which is called P ’s trust policy. Thus, at any given time the
trust-state of the system can be described as function, m : P → P → T , where
P is the set of principals, and the interpretation is that m(P)(Q) describes P ’s
trust in Q. At any time there is a unique trust-state describing how principals
trust, and this state is the �-least fixed point of the monotone function induced
by the collection of all licenses.

In SECURE, each principal P has its own decision making framework which
is invoked when an application needs to make some decision involving another
principal. The decision making framework contains three primary components:
the risk engine, the trust engine, and the collaboration monitor. At the most
abstract level, the collaboration monitor records the behaviour of principals with
which P has interacted. This information together with a trust policy defines
how P assigns trust values to any other principal. The trust information, in turn,
serves as a basis for a risk analysis of any interaction. In fact, with each type
of interaction with a principal, say Q, there is a finite set of possible outcomes
of the interaction. The outcome that occurs is determined by the behaviour of
Q. Each of these outcomes has an associated cost3 which could be represented
simply as a number, but could also be a more complex object like a probability
distribution on say R. Since the outcome depends on Q, the decision of how
to interact is based on the trust in Q. In this set-up it is necessary that the
trust value for Q carries enough information that estimation of the likelihood
of each of the outcomes is possible. If this estimation is possible, one may start
reasoning about risk, e.g. the expected cost of an interaction. The rest of this
paper describes the model for trust deployed in SECURE applications.

2 An Evidence Based Framework

As we discussed in the previous section the SECURE architecture brings forward
the need for a formal model for trust supporting the approximation of likeli-
hood of interaction outcomes, based on previous observations. We now propose
a framework supporting this reasoning. We will use the mathematical structures

3 The term cost should be understood more generally as cost or benefit. If costs are
represented as non-negative numbers, one might represent benefit as negative num-
ber.

On the Formal Modelling of Trust in Reputation-Based Systems 195

known as event structures (see [15] for an original reference and the handbook
chapter [16] for an extensive reference).

Definition 1 (Event Structure). An event structure is a triple (E,≤,#)
consisting of a set E of events which are partially ordered by ≤, the necessity
relation (or causality relation), and # is a binary, symmetric, irreflexive relation
⊂ E × E, called the conflict relation. The relations satisfy

{e′ ∈ E | e′ ≤ e} is finite,

if e # e′ and e′ ≤ e′′ then e # e′′

for all e, e′, e′′ ∈ E. We say that two events are independent if they are not in
either of the two relations.

As an example, the event structure in Figure 1 could model a small scenario
where a principal may ask a bank for the transfer of electronic cash from its bank
account to an electronic wallet. After making the request, the principal observes
that the request is either rejected or granted. After a successful transaction,
the principal could observe that the cash sent in the transaction is forged or
perhaps run an authentication algorithm to establish that it is authentic. Also,
the principal could observe a withdrawal from its bank account with the present
transaction’s id, and this withdrawal may or may not be of the correct amount.
The two basic relations on event structures have an intuitive meaning in our set

authentic ���� forged correct ���� incorrect

reject ���������������������������������� grant

����������������

�����������������

���������

����������

Fig. 1. An event structure describing our example. The curly lines ∼ describe the
immediate conflict relation and pointed arrows, the causality relation

up. An event may exclude the possibility of the occurrence of a number of other
events. In our example the occurrence of the event ’transaction rejected’ clearly
excludes the event ’transaction granted’. The necessity relation is also natural:
some events are only possible when others have already occurred. In the example
structure, ’money forged’ only makes sense in a transaction where the transfer of
money actually did occur. Whether the e-cash is forged and whether the correct
amount is charged are two independent observations that may be observed, in
any order, which is modelled as independence in the event structure.

Definition 2 (Configurations of an Event Structure). Let ES = (E,≤,#)
be an event structure. Say that a subset of events x ⊆ E is consistent if it satisfies
the following two properties:

196 Mogens Nielsen and Karl Krukow

1. Conflict free: for any e, e′ ∈ x : e �# e′ (i.e. (e, e′) �∈ #).
2. Necessity downwards closed: for any e ∈ x, e′ ∈ E : e′ ≤ e⇒ e′ ∈ x.

Define the configurations of ES, written CES, to be the set of consistent subsets
of E. We will define C0

ES to be the finite configurations. Define relation → on
CES × E × CES by

x
e→ x′ ⇐⇒ e �∈ x and x′ = x ∪ {e}

A (finite) configuration models information regarding the result of one in-
teraction. Note that the outcomes of an action corresponds to the maximal
configurations (ordered by inclusion) of the event structures, and knowing the
outcome corresponds to having complete information. The configurations of our
example is given in Figure 2.

{g,a,c} {g,f,i} {g,a,c} {g,f,i}

{g,a}

����������������������� {g,f}

����������������������� {g,c}

����������������������� {g,i}

�����������������������

{r} {g}

�������

																	

�����������������

∅

�����������

Fig. 2. Configurations of the event structure in Figure 1. The lines indicate inclusion
and the events are abbreviated

We can now be more precise about the role of the collaboration monitor in
the SECURE framework. Informally, its function is to monitor the behaviour
of principals with whom interaction is made. For a particular interaction the
possible events that may occur are modelled by an event structure, say ES.
The information about the outcome of this interaction is simply a configuration,
x ∈ C0

ES .

Definition 3 (Interaction History). Let ES = (E,≤,#) be an event struc-
ture. Define an interaction history in ES to be a finite ordered sequence H of
configurations, H = x1x2 · · ·xn ∈ C0

ES
∗. The individual components xi in the

history H will be called interactions.

An interaction history in the event structure from Figure 1 could be the sequence
{g, a, c}{g, c}{g}{r}. The concept of interaction histories models one principal’s
recording of previous interactions with another. When the collaboration monitor
learns about the occurrence of an event, e, this information is increased. We
define a simple relation expressing this operation.

On the Formal Modelling of Trust in Reputation-Based Systems 197

Definition 4 (Information Relation). Let ES = (E,≤,#) be an event struc-
ture and let H = x1 · · ·xn and K = y1 · · · yn be interaction histories in ES,
e ∈ E an event, and i ∈ N, 1 ≤ i ≤ n be an index, then define:

H
(e,i)⇒ K ⇐⇒ xi

e→ yi and ∀(1 ≤ j ≤ n) : j �= i⇒ xj = yj

and also let new be a special event new �∈ E then

H
new⇒ H · ∅

Let H ⇒ K denote that either H new⇒ K or there exists e ∈ E, i ∈ N so that

H
(e,i)⇒ K, and ⇒∗ the reflexive and transitive closure of ⇒.

2.1 Evaluating Evidence

We will equate the notion of trust values with “evidence values”. That is, values
expressing the amount of evidence regarding a particular partial outcome (i.e. a
configuration). We will consider the derivation of such values based on interaction
histories.

Consider an event structure ES = (E,≤,#). A trust value will be a function
from CES into a domain of evidence values. The function applied to a configu-
ration x ∈ CES is then a value reflecting the evidence for x. It will be natural
to express this evidence value as a triple of natural numbers (s, i, c) ∈ N3. The
interpretation is that out of s+ i+ c interactions, s of these support the occur-
rence of configuration x, c of these contradict it, and i are inconclusive about x
in the sense that they do not support or contradict it.

Definition 5. Let ES = (E,≤,#) be an event structure and let x be a config-
uration of ES. Define the effect of x as a function, effx : CES → N3 by

effx(w) =

⎧⎪⎨⎪⎩
(1, 0, 0) if w ⊆ x

(0, 0, 1) if x#w (i.e. ∃e ∈ x, e′ ∈ w : e # e′)
(0, 1, 0) otherwise

Also for (s, i, c), (s′, i′, c′) ∈ N3 define (s, i, c) + (s′, i′, c′) = (s+ s′, i+ i′, c+ c′).

The intuition behind the definition of effx is the following. Think of x as a
configuration which has already been observed. We are now considering engaging
in another interaction which will end up in some configuration. Thus, we would
like to estimate the likelihood of ending up in a particular configuration w, given
that the last interaction ended in x. There are exactly three cases for any fixed
configuration w: if w ⊆ x then the fact that x occurred last time supports the
occurrence of w. If instead x # w then x contains an event which rules out the
configuration w. Finally, if neither of these are the case, i.e. w didn’t occur but
also wasn’t excluded, we say that x is inconclusive about w. There is a strong
similarity between this division of configurations in three disjoint classes and
the way Jøsang [17] derives his uncertain probabilities in the Dempster-Shafer
framework for evidence [18]. We discuss this in the concluding section.

198 Mogens Nielsen and Karl Krukow

Definition 6. Let ES = (E,≤,#) be an event structure, define the function
eval : C0

ES
∗ → (CES → N3):

eval(x1x2 · · ·xn) = λw.

n∑
i=1

effxi(w)

We would like to note that the functions eff and eval allow for many useful
variations when computing trust values from interaction histories. For example,
suppose we want to model a ”memory” so that a principal only remembers the
last M + 1 ∈ N interactions. This could be done by simply taking

evalM (x1x2 · · ·xn) = λw.

n∑
i=n−M

effxi(w) = eval(xn−Mxn−M+1 · · ·xn)

One could also imagine older interactions ”counting less”, which could be mod-
elled by scaling and rounding of the value of, say, the interactions older than a
certain boundary.

2.2 Ordering Evidence

Given this intuition we will consider two orderings on evidence values: an infor-
mation ordering, and an ordering expressing ”more evidence in favour of”, which
we call the trust ordering.

Information order. The information ordering � of N3 is defined as follows:

(s, i, c) � (s′, i′, c′) ⇐⇒ (s ≤ s′) ∧ (c ≤ c′) ∧ (s+ i+ c ≤ s′ + i′ + c′)

The rationale is that (s′, i′, c′) represents more information than (s, i, c) if
it can be obtained from (s, i, c) by performing some additional number of
interactions, or by refining the information about a particular interaction (or
both). By refining we mean to change an ”inconclusive” to ”supporting” or
”contradicting”. N̂3 denotes the completion of N3 by a greatest element 	�.

Trust order. The trust ordering � of N3 is defined as:

(s, i, c) � (s′, i′, c′) ⇐⇒ (s ≤ s′) ∧ (c ≥ c′) ∧ (s+ i+ c ≤ s′ + i′ + c′)

Here (s′, i′, c′) expresses “more evidence in favour of” than (s, i, c) if it con-
tains more supporting evidence, less contradicting evidence, and still at least
as many interactions. Intuitively one can obtain (s′, i′, c′) from (s, i, c) by
changing contradicting evidence to inconclusive or supporting, changing in-
conclusive to supporting, or by adding inconclusive or positive events.

Theorem 1. The structure (N̂3,�) is a complete lattice. The binary join is
given by (s0, i0, c0)�(s1, i1, c1) = (s̄, ī, c̄) where s̄ = max{s0, s1}, c̄ = max{c0, c1}
and

ī = min{i ∈ N | s̄+ i+ c̄ ≥ max{s0 + i0 + c0, s1 + i1 + c1}}

On the Formal Modelling of Trust in Reputation-Based Systems 199

The join with respect to 	� is as expected, and the join of any infinite set is
	�. Furthermore, the structure (N3,�) is a lattice. The binary �-join is given
by (s0, i0, c0) ∨ (s1, i1, c1) = (ŝ, î, ĉ) where ŝ = max{s0, s1}, ĉ = min{c0, c1} and

î = min{i ∈ N | ŝ+ i+ ĉ ≥ max{s0 + i0 + c0, s1 + i1 + c1}}
The meet is obtained dually. Finally, the join and meet functions for the trust
order, ∨,∧ : N3 ×N3 → N3 are monotone with respect to the information order.

In the following we use � also for the pointwise extension of � to trust
values, i.e. the functions CES → N̂3. We can relate the relation⇒∗ on interaction
histories with the information relation on trust values.

Proposition 1. Let ES be an event structure and H,K ∈ C0
ES

∗ interaction
histories. Then eval is monotonic in the sense that if H ⇒∗ K then also
eval(H) � eval(K).

Some information is discarded by eval, and the following proposition explains
what is lost. The function eval is injective up to rearranging the order of inter-
actions.

Proposition 2. Let ES = (E,≤,#) be an event structure and H,K ∈ C0
ES be

configurations, H = x1x2 · · ·xn and K = y1y2 · · · ym. If eval(H) = eval(K)
then n = m and there exists a permutation on n elements σ : [n] ∼→ [n] so that

H = σ(K) = yσ(1)yσ(2) · · · yσ(n)

Returning to the SECURE architecture, the risk engine uses trust values to
derive estimates on the likelihood of the various outcomes. Our trust values con-
vey sufficient information to enable estimation of probability distributions on the
configurations. There are several ways to do this, depending on the application.
For example one might derive an opinion ωx = (bx, ux, dx) for x ∈ CES in the
sense of Jøsang, which gives rise to a probability pdf [17, 12].

3 Trust Policies

As discussed in the introduction, each principal defines a local trust policy fol-
lowing the idea from [5]. We give an example of a language for specifying such
policies. The syntax is given in Figure 3. A policy is a list of specific policies,
terminated by a general policy. The specific policies explicitly name a principal
and a corresponding trust expression (τ), whereas the general policy applies to
any principal not explicitly listed. In this simple example language, the trust ex-
pressions are built up from the basic constructs of “local reference” and “policy
reference”, and these can then be combined with the various joins and meets
we have available. The two types of references are similar in that both refer to
a principal P ’s trust value for a principal Q. The difference is that the local
reference refers to P ’s personal observation on Q, whereas the trust reference
instead refers to the value that P would compute using its policy.

200 Mogens Nielsen and Karl Krukow

π ::= � : τ (default policy)

| p : τ ;π (p ∈ P, specific policies)

τ ::= p?locq (local reference to p, q ∈ P ∪ {�})
| p?q (policy reference to p, q ∈ P ∪ {�})
| τ1 binop τ2 (binary operation binop ∈ {∧,∨,�,�})

Fig. 3. An example policy language

The semantics of a policy is interpreted relative to an environment providing
for each pair P,Q of principals a trust value which we think of as being P ’s
interaction history with Q evaluated as in the previous section. This serves as the
data for the local references. Let obs : P → P → CES → N̂3 be a fixed function
representing this. The semantics of a policy π is a function which takes as input
the observation data obs, and gives as output a �-monotone function mapping
the global current trust state (an element in GS = P → P → (CES → N̂3)), to
a local trust state (an element of LS = P→ (CES → N̂3)). We denote this as

�π�obs : GS → LS

The semantic function �·�obs is defined by structural induction on the syntax of
π in Figure 4. The definitions make use of the semantic function in Figure 5,

�� : τ�obs = λm ∈ GS.λy ∈ P.�τ�obs(m)([� �→ y])

�p : τ ; π�obs = λm ∈ GS.λx ∈ P. if (x = p) then �τ�obs(m)([� �→ p])

else �π�obs(m)(x)

Fig. 4. Semantics of the policy language: syntactic category π

�Y ?locZ�obs(m)(env) = obs (env† Y) (env† Z) (where Y, Z ∈ P ∪ {�})
�Y ?Z�obs(m)(env) = m (env† Y) (env† Z) (where Y, Z ∈ P ∪ {�})

�τ1 binop τ2�
obs(m)(env) =

(
�τ1�

obs(m)(env)
)

�binop�
(
�τ2�

obs(m)(env)
)

Fig. 5. Semantics of the policy language: syntactic category τ

essentially mapping the syntactic category τ to an element of CES → N̂3. This is
again interpreted relative to observations obs and the current trust state m : GS,

On the Formal Modelling of Trust in Reputation-Based Systems 201

but also relative to an environment, env : {�} → P, which interprets � as a name
in P. The env function extends trivially to a function of type {�} ∪ P→ P (the
identity on non-� elements). The semantics of a binop is the corresponding � or
� lub/glb4, which is �-monotone by Theorem 1.

We can now view a collection of mutually referring policies,

Πobs = {�πP �obs | P ∈ P}
as defining a “web of trust”, and define a unique monotone function Πobs

λ

Πobs
λ =

〈
�πP �obs : P ∈ P

〉
: GS → GS

with the property that
ProjQ ◦Πobs

λ = �πQ�obs

for all Q ∈ P. This function essentially takes a piece of global trust information
m : GS and gives a piece of global trust information Πobs

λ (m) : GS which,
when applied to p and then to q, returns p’s trust in q under πp, given trust as
specified in m. Now, since the trust values CES → N̂3 form a complete lattice
with the information ordering, and since Πobs

λ is a monotone endo-function on
this structure, it has a unique least fixed point. We define the trust information
in a web of trust, Π = {πp | p ∈ P} with local observations given by obs, as the

least fixed point of the induced function, �Π�obs (def)
= lfp Πobs

λ .
The interested reader is referred to [8, 9] for examples of policies.

4 Transferring Information

The example policy language in the previous section allows principals to share
trust information by means of the reference constructs. However, we were im-
plicitly assuming that all principals agree on the event structure used. One event
structure describes a particular context, i.e. there is one event structure for each
possible way of interacting. It is useful to be able to map trust values between
contexts that are somehow related, e.g. if one has only very little information
about context ES1 but much information about a related context ES2, it is often
useful to somehow apply the knowledge of ES2 to give an estimate in ES1. We
are aiming at formalising the kind of evidential transfer we all employ in every
day life, where e.g. observations of an individual A’s behaviour with respect to
timely payments of bills affects also our trust in A with respect to the question
of whether to lend him money. We propose a definition of a morphism of event
structures enabling such an information transfer.

Definition 7 (Morphism of event structures). Let ES = (E,≤,#) and
ES′ = (E′,≤′,#′) be event structures. A morphism of event structure, η : ES →
ES′ is a function η : E′ → 2E which has the following two properties:
4 We use a strict version of the �-lub/glb which is the �-strict extension of ∨,∧ :

N
3 × N

3 → N
3 to a function N̂3 × N̂3 → N̂3 which is also monotone.

202 Mogens Nielsen and Karl Krukow

1. Monotonic: For any e′, e′′ ∈ E′ if e′ ≤′ e′′ then we have

∀e2 ∈ η(e′′)∃e1 ∈ η(e′) : e1 ≤ e2

2. Preserves conflict: For any e′, e′′ ∈ E′ if e′ #′ e′′ then

∀e1 ∈ η(e′)∀e2 ∈ η(e′′) : e1 # e2

A morphism η : ES → ES′ can be thought of as a transfer of evidence from
ES to ES′. The idea is that e ∈ η(e′) means that an occurrence of e in ES is
an indication of the event e′ occurring in ES′. We will think of the set η(e′) as
a disjunction of conditions in the sense that e′ occurs if there is some e ∈ η(e′)
which has occurred in ES. If η(e′) = ∅ then we say that e′ has no enabling
condition under η.

Definition 8 (Category of Event Structures, E). Consider the following
categorical data, which we will call the category of event structures, and denote E.

– Objects are event structures ES = (E,≤,#)
– Morphisms η : ES → ES′, are the morphisms of Definition 7.
– Identities 1ES : ES → ES are the functions 1ES : E → 2E given by

1ES(e) = {e}
– For η : ES → ES′ and ε : ES′ → ES′′ composition, ε ◦ η : ES → ES′′ is

given by the following function ε ◦ η : E′′ →� 2E

ε ◦ η(e′′) =
⋃

e′∈ε(e′′)

η(x′)

Proposition 3 (E is a category). The definition of E yields a category.

A morphism, η : ES → ES′ can then be used to map configurations of ES
to configurations of ES′ by the mapping, η̄ : CES → CES′

η̄(x) = {e′ ∈ E′ | ∃e ∈ η(e′) : e ∈ x}

The axioms of morphisms imply that η(x) is a configuration, and the fact that
E constitutes a category means that we can compose the information transfer
functions to obtain information transfer functions.

5 Conclusion

We have proposed a mathematical framework for trust, and a way of deriving
trust values from interaction histories. In this framework trust is identified with
evidential information, arising from observed behaviour, allowing the estimation
of likely future behaviour. The framework is deployed in the SECURE project,
and has been used in concrete SECURE prototype applications for e.g. spam

On the Formal Modelling of Trust in Reputation-Based Systems 203

filtering [14]. The trust model fits well with the bi-ordered trust structures of [8,
9] and uses ideas from the framework of Weeks [5]. The way that trust values are
derived from interaction histories is similar to the way that belief and plausibility
functions are derived in [18], and the way in which Jøsang derives his “opinions”
from belief-mass assignments in the subjective logic [17]. Event structures can
be seen as a generalisation of the traditional frames of discernment from the
Dempster-Shafer theory of evidence. If one allows a generalised version of event
structures in which the conflict relation is allowed to be a subset of E × 2E

(where e#X means that e cannot occur if X has occurred), it is not hard to see
that each frame of discernment θ corresponds to an event structure with events
{p̄ | p ∈ θ}, where any event p̄ is in conflict only with the set {q̄ | q ∈ θ, q �= p}.
The understanding of a p̄ is the exclusion of the state p. The configurations of the
event structure is isomorphic to the poset (2θ \ ∅,⊆)op. Furthermore, x ∩ y = ∅
in 2θ \ ∅ iff the corresponding configurations are in conflict.

While the problem of transferring trust between related contexts has been
discussed, we still need to investigate the usefulness of our formalisation in terms
of event structure morphisms in concrete application scenarios. The concept of
morphisms seems to be appropriate for evidence transfer, but the exact defi-
nition needs some further investigation. As an example, we have considered a
generalisation of the event structure morphisms presented, in which we allow
η : E′ → 2C0

ES , i.e. η is maps events to a disjunction of arbitrary finite con-
figurations instead of only prime configurations (i.e. configurations of the form
{e ∈ E | e ≤ e0} for some e0). This generalised definition gives rise to a category
containing E as a subcategory.

Acknowledgements

We would like to thank Marco Carbone, Vladimiro Sassone and the SECURE
consortium for their contribution to this work.

References

1. Blaze, M., Feigenbaum, J., Ioannidis, J., Keromytis, A.: The role of trust manage-
ment in distributed systems security. In Vitek, J., Jensen, C.D., eds.: Secure Inter-
net Programming. Volume 1603 of Lecture Notes in Computer Science., Springer
(1999)

2. Blaze, M., Feigenbaum, J., Lacy, J.: Decentralized trust management. In:
Proc. IEEE Conference on Security and Privacy, Oakland. (1996)

3. Blaze, M., Feigenbaum, J., Strauss, M.: Compliance checking in the policymaker
trust management system. In: Financial Cryptography. (1998) 254–274

4. Blaze, M., Feigenbaum, J., Lacy, J.: KeyNote: Trust management for public-key
infrastructure. Springer LNCS 1550 (1999) 59–63

5. Weeks, S.: Understanding trust management systems. In: Proc. IEEE Symposium
on Security and Privacy, Oakland. (2001)

6. Ellison, C.M., Frantz, B., Lampson, B., Rivest, R., Thomsa, B., Ylonen, T.: SPKI
certificate theory. RFC 2693 (1999)

204 Mogens Nielsen and Karl Krukow

7. Grandison, T., Sloman, M.: A survey of trust in internet application. IEEE Com-
munications Surveys, Fourth Quarter (2000)

8. Carbone, M., Nielsen, M., Sassone, V.: A formal model for trust in dynamic net-
works. In: Proceedings from Software Engineering and Formal Methods, SEFM’03,
IEEE Computer Society Press. (2003)

9. Krukow, K., Nielsen, M.: Towards a formal notion of trust. In: Proceedings of
the 5th ACM SIGPLAN international conference on Principles and Practice of
Declarative Programming. (2003)

10. Shmatikov, V., Talcott, C.: Reputation-based trust management. Journal of Com-
puter Security (selected papers of WITS ’03) (2004)

11. Mui, L., Mohtashemi, M.: Notions of reputation in multi-agent systems: A review.
In: Trust, Reputation, and Security: Theories and Practice, AAMAS 2002 Inter-
national Workshop, Bologna, Italy, July 15, 2002, Selected and Invited Papers.
(2002)

12. Jøsang, A., Ismail, R.: The beta reputation system. In: Proceedings of the 15th
Bled Conference on Electronic Commerce, Bled. (2002)

13. Cahill et al., V.: Using trust for secure collaboration in uncertain environments.
IEEE Pervasive Computing 2 (2003) 52–61

14. Cahill, V., Signeur, J.M.: Secure Environments for Collaboration among Ubiqui-
tous Roaming Entities. Website: http://secure.dsg.cs.tcd.ie (2003)

15. Nielsen, M., Plotkin, G., Winskel, G.: Petri nets, event structures and domains.
Theoretical Computer Science 13 (1981) 85–108

16. Winskel, G., Nielsen, M.: Models for concurrency. Handbook of Logic in Computer
Science 4 (1995) 1–148

17. Jøsang, A.: A logic for uncertain probabilities. Fuzziness and Knowledge-Based
Systems 9(3) (2001)

18. Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press (1976)

Issues with Applying Cryptography in Wireless

Systems

Valtteri Niemi

Nokia Research Center
P.O. Box 407, FIN-00045
NOKIA GROUP, Finland
valtteri.niemi@nokia.com

Abstract. We survey main cryptographic features in several major wire-
less technologies. Cellular systems GSM/GPRS and UMTS (3G) are cov-
ered, and also shorter range systems Wireless LAN and Bluetooth. Then
we continue by presenting problematic areas with applying cryptography
in these wireless systems. Several examples are given in each problem
area.

1 Introduction

In the first part of this paper we do a brief survey on cryptographic mechanisms
in some of the most important wireless technologies. On cellular systems, we
first describe security solutions in the GSM technology, the dominant global
cellular standard. We continue by showing how the security model and security
mechanisms were extended and enhanced in the successor of the GSM system, i.e.
in the Universal Mobile Telecommunications System (UMTS), specified in the
global 3rd Generation Partnership Project (3GPP). On shorter range wireless
technologies we discuss Wireless LAN security, as standardized by IEEE, and
also Bluetooth security that is specified by an industry consortium called the
Bluetooth SIG (Special Interest Group). A typical use case of WLAN is access
to Internet through a WLAN access point from distances up to several hundred
meters while a typical Bluetooth use case is communication between two devices,
e.g. a mobile phone and an accessory, with a distance in the order of ten meters.

Cryptographic algorithms provide a major tool for wireless security but defin-
ing how the algorithms are used as a part of a communication system architecture
is a demanding task by itself. The second part of the paper contains issues with
applying cryptography in wireless systems of global scale. Several examples of
problems are presented. For most of these examples solutions exist also but typ-
ically these solutions are not fully satisfactory. We study issues in the following
problematic areas: composition of several mechanisms, continuity from legacy
systems and equipment to more secure solutions of the future, key management
and constraints imposed by other functionalities.

J. Karhumäki et al. (Eds.): Theory Is Forever (Salomaa Festschrift), LNCS 3113, pp. 205–215, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

206 Valtteri Niemi

2 GSM Cryptography

The essential cryptographic algorithms of GSM are explained in this section. The
A3 algorithm has a one-way property and it is the core of a challenge-response
protocol that is needed for authentication of users. Key generation is tightly
linked into authentication and another algorithm with one-way property, called
A8, is used for this purpose. The generated 64-bit key, Kc is subsequently used
in the encryption algorithm A5 that is embedded in the physical layer of the
GSM radio interface. To be more precise, A3, A5 and A8 are names of algorithm
families. The GSM security architecture allows each algorithm to be replaced
by another one that has the same input-output structure. For encryption, three
different stream ciphers A5/1, A5/2 and A5/3 have been standardized so far in
European Telecommunication Standards Institute (ETSI).

The situation is even more fragmented for A3 and A8. This is a consequence of
the fact that these algorithms need not be standardized at all. The algorithms
are executed only in two locations, in the SIM card inside the user terminal,
and in the Authentication Centre that is a database in the user’s home network.
Therefore, each mobile network operator may in principle use its own proprietary
algorithms.

In the packet switched domain of the GSM system, i.e. in GPRS (General
Packet Radio Service), the radio interface encryption is replaced by encryption
on layer three of the radio network. This change has minor effects on the crypto-
graphic algorithm input-output structure but there are more substantial effect in
the sense that the protection is extended further in the network, i.e. the packet
data traffic is encrypted from the terminal all the way to the core network. At
the time of writing, there are three different standardized stream ciphers GEA1,
GEA2 and GEA3 for GPRS.

The GSM security architecture, like any wide scale security architecture, is
a result of a trade-off between cost and security. The parts of the system that
were seen as most vulnerable have been protected well while some less vulnerable
parts have no protection. As already mentioned above, in circuit-switched part
of GSM the encryption covers only the radio interface between the terminal and
the base station. It is also worth noticing that the terminal does not execute
any explicit authentication of the network, thus leaving the terminal vulnerable
against certain types of active attacks. In particular, this refers to a malicious
party who has the required equipment to masquerade as a legitimate network
element and/or legitimate user terminal.

The GSM security architecture has also been criticized for keeping some
essential parts secret, e.g. specifications of the cryptographic algorithms. This
secrecy does not create trust on algorithms in the long run because they are not
publicly available for analysis with most recent methods. Also, protection based
on global secrets is not efficient because these secrets tend to be revealed sooner
or later.

Issues with Applying Cryptography in Wireless Systems 207

3 UMTS Cryptography

The UMTS technology can be seen as a successor of GSM. Indeed, the core
network part of UMTS is an enhanced version of the GSM core network. On the
other hand, there has been more revolutionary development in the radio network
part. The evolution vs. revolution aspect is reflected in the security features. The
UMTS authentication and key agreement mechanisms are executed between the
terminal and the core network; these mechanisms were created by enhancing
GSM-type challenge-response user authentication protocol with a network au-
thentication based on sequence numbers.

In the radio network there is more revolution in security features. Encryption
is provided by f8 algorithm on the radio layer two, and as a completely new
feature, integrity protection algorithm f9 is applied to signaling messages on
the radio layer three. Also in UMTS, the symbols f8 and f9 refer to algorithm
families; only the input-output structure is fixed, not the internal structure of
the algorithms. Currently, one version of both algorithms has been standardized,
both based on the publicly specified KASUMI block cipher. At the time of
writing, the 3GPP has begun the process of specifying another pair of algorithms.
While it is not seen probable that KASUMI algorithm would be broken in the
near future, an alternative would clearly increase the overall security level of
UMTS.

In the following subsections we briefly go through all the essential UMTS
security feastures. See [5] for further reading.

3.1 Mutual Authentication

Three entities are involved in the authentication mechanism of the UMTS sys-
tem: home network, serving network (SN) and terminal, or more specifically
Universal Subscriber Identity Module (USIM, typically in a smart card). The
SN checks subscribers identity (as in GSM) by a challenge-response technique
while, on the other hand, the terminal checks that SN has been authorised by
the home network to do so. As explained earlier, the latter feature is new in
UMTS (when compared to GSM).

The basis for the authentication mechanism is a master key K that is shared
between the USIM and the home network. This is a permanent secret with the
length of 128 bits. The key K is never transferred out from the two locations.
In particular, the user has no way of getting to know her/his master key. A
key agreement procedure is inseparably linked to the mutual authentication. It
provides keys for encryption and integrity protection. These are temporary keys
with the same length of 128 bits. Every time the USIM is authenticated, new
keys are derived from the permanent key K.

3.2 Radio Encryption

Once the user and the network have authenticated each other they may begin
secure communication. As described earlier, a cipher key CK is shared between

208 Valtteri Niemi

the core network and the terminal after a successful authentication. Before en-
cryption can begin, the communicating parties have to agree on the encryption
algorithm also. On user side, encryption/decryption takes place in the termi-
nal (not in USIM), and on network side, the Radio Network Controller (RNC)
handles encryption/decryption. This means that the cipher key CK has to be
transferred from core network to the radio access network, and inside terminal
the CK is transferred over the USIM-terminal interface.

The UMTS encryption mechanism is based on a stream cipher concept be-
cause it has an inherent advantage that the mask data can be generated before
the actual plaintext is known. Then the final encryption is a very fast bit oper-
ation.

3.3 Integrity Protection

The purpose of the integrity protection is to authenticate individual control
messages. The integrity protection is also used between the terminal and RNC,
just like encryption. The integrity key IK is generated during the authentication
and key agreement procedure, again similarly as the cipher key.

Output of the integrity protection mechanism is a message authentication
code that consists of 32 bits.

3.4 Network Domain Security

The term ”network domain security” refers to protection of communication be-
tween different 3GPP networks (and network elements). A basic notion on the
IPsec-based security in 3GPP systems is the security gateway. All control plane
IP communication towards external networks should go via security gateways.
These gateways use the Internet Key Exchange (IKE) protocol to exchange IPsec
Security Associations between themselves. The protection method for the data
traffic is IPsec Encapsulated Security Payload (ESP).

3.5 SIP Security

The 3GPP has specified an IP Multimedia Subsystem (IMS) that is a core net-
work subsystem using Session Initiation Protocol (SIP) for session management
and call control. The actual user data traffic (voice, video etc.) is carried over IP
and in principle IMS may be built on top of any access technology that supports
IP connectivity.

When a User Agent (UA) in the terminal wants to get access to IMS, it
typically first connects to the 3GPP radio network. In this process, UMTS se-
curity features (described earlier) are utilized: mutual authentication, integrity
protection and encryption on the hop between the terminal and RNC. Through
the core network, the UA is able to contact IMS nodes using SIP signaling. The
first contact in IMS is SIP Proxy, called P-CSCF (Proxy Call Session Control
Function). Through it the UA is able to register itself to home IMS. At the same

Issues with Applying Cryptography in Wireless Systems 209

time UA and home IMS authenticate each other, based on permanent shared
master secret. They also agree on temporary keys.

The SIP traffic between visited IMS and home IMS is protected by network
domain security mechanisms. The security associations used for this purpose are
not specific to the UA in question.

Next UA and the P-CSCF negotiate in a secure manner all parameters of
the security mechanisms to be used to protect further SIP signaling, e.g. crypto-
graphic algorithms. Finally integrity protection of first hop SIP signaling between
UA and P-CSCF is started, using IPsec ESP.

3.6 Recent Developments

At the time of writing, 3GPP is finalizing security mechanisms on following
areas:

-Wireless LAN interworking with 3GPP systems;
- Multimedia Broadcast/Multicast Service;
- Generic Authentication architecture;
- Presence, Messaging, Conferencing services;
- Authentication framework for network domain security: this adds support

of a Public Key Infrastructure (PKI) for key management.

4 Bluetooth Cryptography

The Bluetooth technology includes authentication and key agreement between
two peer devices where the cryptoalgorithm SAFER++ is in use in an appropri-
ate mode. In Bluetooth,unlike in cellular systems, the authentication algorithm
has to be standardized because it is executed in terminal devices. The keys used
in authentication are agreed first by a pairing procedure in which a link key
is generated. For radio interface confidentiality, Bluetooth uses a stream cipher
tailor-made for this purpose.

It allows fast and simple hardware implementation because it uses linear
feedback shift registers (LFSR) as building blocks. The algorithm has strong
correlation properties and LFSRs are initialized for each data packet to be en-
crypted. It is possible to encrypt both point-to-point and point-to-multipoint
connections.

The Bluetooth link layer security is based on the strength of the link key. That
is dependent of the Bluetooth PIN or it is fetched directly from the application
layer. Link layer security mechanisms, i.e authentication and encryption, can
be activated directly or from the application. Anonymity protection has to be
provided by separate means if needed. Positioning attack is possible because
identification of the Bluetooth devices is based on permanent addresses. On the
other hand, this hardly constitutes a severe threat in most practical situations,
since the coverage of Bluetooth radio is small.

210 Valtteri Niemi

5 WLAN Cryptography

The IEEE 802.11 group has specified the Wireless Local Area Network (WLAN)
technology. During that process, also security mechanisms for WLAN were de-
veloped, called Wired Equivalent Privacy (WEP). The naming already indicates
that the goal was the same as in GSM, i.e. to provide security level comparable
to that of wired networks. Unfortunately, the original design of WEP has sev-
eral weaknesses. For example, the RC4 cipher is used with short initialization
values, key management is weak in many implementations and the system lacks
integrity protection and replay protection. At the time of writing, the IEEE
802.11 is finalizing a completely new set of security mechanisms, including new
cryptoalgorithms.

An industry consortium Wi-Fi Alliance has already endorsed an intermedi-
ate set of enhanced set of security mechanisms. This set is called WPA (Wi-Fi
Protected Access) and it is also implemented in many products.

Both WPA and the complete security specification (IEEE 802.11i) are based
on an authentication and key management framework (IEEE 802.1X). This in-
troduces possibility to use EAP (Extensible Authentication Protocol) [4]. For
instance, password-based or public key based authentication can be used in EAP
and, thus, also in WPA and in 802.11i. WPA includes also improved usage of RC4
by TKIP (Temporal Key Integrity Protocol). Furthermore, WPA adds message
integrity and replay protection.

The complete IEEE 802.11i adds adequate replacements for all features of
WEP. For instance, RC4 is replaced by AES. Wider range of network configura-
tions is supported, as well as concepts of personal area networks, roaming and
handovers.

6 Composition of Mechanisms

In this section and in the remainder of the paper, we study several issues that
have arised when cryptographic techniques are introduced to wireless systems.
These examples of issues try to give an overall picture about the diversity of
issues.

The first category consists of issues with composition of security mechanisms.
Indeed, it is well known phenomenon in security area that two secure mechanisms
can be combined in a way that looks reasonable at first sight but yet it turns
out that the composition provides no security at all.

6.1 Tunneled Authentication

As already briefly mentioned in previous section, Extensible Authentication Pro-
tocol (EAP) is a general protocol framework that supports multiple authentica-
tion mechanisms. It allows a back-end server to implement the actual mechanism
while the authenticator element simply passes authentication signaling through.

Issues with Applying Cryptography in Wireless Systems 211

EAP consists of several Request/Response pairs where Requests are always sent
by the network.

We now provide some analysis of the problem. We have an inner protocol
that is, for instance, a legacy GSM authentication protocol based on SIM card
built into EAP. Then there is an outer protocol, typically in the form of a TLS
tunnel. Note here that the inner legacy protocol is usually also in use without any
tunnelling, as is the case for GSM. If we continue now with this GSM example,
a man-in-the-middle can set up a false cellular base station to ask terminal for
responses to challenges.

Even in the case where EAP protocol would be used exclusively in tunnelled
mode, authentication of the TLS tunnel relies solely upon terminal actions. There
is a weak point here because the terminal user may easily accept an unknown
certificate. This kind of dependency on user’s actions is typically not accept-
able to network operators. Now the session keys are derived from TLS Master
Key generated using tunnel protocol (this is the same key as used to create the
tunnel before the inner authentication can begin). The result is that the keys
potentially derived in the EAP protocol (e.g., the Kc in the case of GSM authen-
tication) are not used for the tunnel anyhow. Therefore, in the best case, where
the inner protocol cannot be used without the tunnel, the security depends on
user’s judgment on certificates, and on the worse case, where the inner protocol
can be used also without the tunnel (e.g. GSM case), there is no way of knowing
whether the end-point of the tunnel is actually man-in-the middle instead of the
legitimate end-point authenticated in the inner protocol.

The main lesson to be learnt from this is not only that there is another case
where composing two secure protocols may result in an insecure protocol. It is
important to note that using tunnelling to ”improve” a remote authentication
protocol is very common approach. Known vulnerable combinations include at
least HTTP Digest authentication and TLS, PEAP and any EAP subtype, PIC
and any EAP subtype.

There are solutions that can be used to fix the problem but usually the exact
fix needs to be tailored to the specific protocols. A typical solution could be to
create a cryptographic binding between tunneling protocol and the authentica-
tion protocol by, for instance, using a one-way function to compute session keys
from tunnel secrets (e.g. TLS master key) and EAP secrets (e.g. IK,CK). See
[1] for further details on this issue.

6.2 Using IPsec for IMS Message Authentication

As explained in an earlier section, IPsec ESP is used in 3GPP system for SIP
message authentication. This implies that the identity to be authenticated is the
IP address. On the other hand, charging is based on user’s identity at SIP level.
This constitutes the first problem in this example. Another problem stems from
the fact that SIP level identity is authenticated for registrations and keys are
derived at the same time for the IPsec ESP. These keys should be taken into use
immediately but how does the IP layer know that its old Security Association is
not valid anymore ?

212 Valtteri Niemi

These problems are not at all unsolvable. But the most straight-forward
solution that has been created for the first problem, i.e. binding of different
layer identities, could also be claimed to be a layer violation and these typically
cause unnecessary restrictions for the system architecture. The second problem
was solved for 3GPP systems by introducing special handling of port numbers
which somebody could call as a misuse of port number semantics.

6.3 Barkan-Biham A5/2 Attack

This recent attack, see [2], exploits weaknesses in GSM cryptographic algorithms.
In particular, A5/2 can be broken fast in ”ciphertext only” model. A further
attack exploits also other legacy features in the GSM security system: A5/2 is
a mandatory feature in terminals, call integrity is only based on encryption and
the same Kc can in principle be used in different algorithms.

An example attack goes as follows. This allows the attacker to decrypt a
strongly encrypted call without using a brute-force method. First the attacker
passively catches the challenge RAND from the radio interface, does not care
about the response SRES, and records the corresponding call encrypted with Kc

and A5/3. Then the attack turns active. The attacker replays the stored RAND
towards the victim and tells the victim to use the weaker algorithm A5/2. Now
the attacker is able to find Kc based on the received encrypted uplink signal.
Consequently, the earlier recorded call can also be decrypted by the attacker.

A proposed countermeasure in 3GPP (that is not yet accepted at the time
of writing) would create an amendment to the GSM security architecture. It
uses the fact that the random challenge RAND is the only variable information
sent from home network to the terminal in the authentication. Now we may
divide the space of all 128-bit RAND values into different classes with respect
to which encryption algorithm is allowed to be used with the Kc derived from
this particular RAND. A 32-bit flag could indicate to the terminal that this kind
of special RAND is in use, and 16 bits would further be used to indicate which
algorithms out of total 8 GSM and 8 GPRS encryption algorithms are allowed to
be used with the key derived from this special RAND. These parameter lengths
would imply that the effective length of RAND is reduced from 128 bits to
80 bits. Fortunately, this reduction would not cause any decrease in the overall
security level.

7 Continuity

In this section we study issues that are related to an important practical re-
quirement of continuity. We have to make sure that new systems are backward
compatible with legacy devices and equipment. There is a two-fold effect. From
one hand, handling of legacy easily introduces security holes into the new sys-
tem. On the other hand, new systems are also legacy of the future, and therefore,
potential future requirements should be taken into account as well in the design.
Of course, finding the right balance between this kind of future-proofing and
current needs is a tricky task.

Issues with Applying Cryptography in Wireless Systems 213

7.1 3G-WLAN Interworking with EAP-SIM

The abbreviation EAP-SIM refers to an Internet draft that describes how GSM
authentication and key agreement protocol can be done in EAP, see [3]. In addi-
tion, this mechanism enhances GSM Authentication and key agreement protocol
with mutual entity authentication based on the derived key Kc. This is done by
utilizing a bundle of (at least two) GSM triplets (RAND,SRES,Kc) in one run
of the entity authentication. Therefore, the network authentication is based on
(at least) 128-bit secret.

WLAN interworking in 3GPP follows the basic idea of connecting WLAN
access zone to the cellular core network. There are several levels of interworking.
For instance, we may have shared subscriber database, shared charging and
authentication, or even shared services.

Cellular access (also for 3GPP radio network) is possible with either SIM or
USIM, and therefore, the same should hold for WLAN access as well. This creates
the following problem: enhancements (e.g. mutual authentication) in EAP-SIM
fall down if an active GSM attack is possible against the terminal in the cellular
side. In particular, an attacker may mount a divide-and-conquer attack against
the bundle of triplets by breaking each Kc separately.

The problem can easily be avoided if the same physical SIM cannot be used
for both cellular and WLAN domains but then we lose part of the interworking
benefits.

7.2 Phased Introduction of Security

This example case of a legacy issue is related to the introduction of security
gateways in network-to-network communications, see earlier section on network
domain security. The problem is, however, not restricted to this context. The
starting point is that communication between networks works well without this
additional security measure.

The first problem can be illustrated by the following simplified calculation.
Assume 10 % of networks have been upgraded to support security gateways.
But then only about 1 % of the total communication volume is protected. This
problem actually applies to any added feature, not only to security features.

The second problem is, instead, specific to security. Assume now that 99 %
of networks have been upgraded to support security gateways. Then about 98
% of total communication volume is protected. But certainly an active attacker
masquerades as one of the remaining 1 % of networks.

7.3 Bluetooth Initialization

Our last example of continuity issues deals with future-proofing.
The original motivation of Bluetooth radio technology was to ”replace wires”.

It makes sense to assume that initial introduction between two devices owned
by the same person (e.g. a mobile phone and a headset) occurs in a relatively

214 Valtteri Niemi

secure environment (e.g. at home or at the office). In such an environment, an
active man-in-the-middle attack is not very probable.

Later many use cases were invented for Bluetooth and suddenly there was
a new requirement: to establish secure connections with foreign devices as well,
e.g. your mobile phone and a Bluetooth device in a ticket booth. It is not rea-
sonable anymore to assume there are no active men-in-the-middle in this kind
of environment.

Lesson to be learnt from this case is that it is always good to leave some safety
margin. This is true not only in the quantitative dimension (e.g. key lengths)
but also qualitatively, i.e. in the plurality of security functionalities.

8 Key Management

It is a well-known fact in practical cryptography that management of keys is
usually a tricky issue.

8.1 Change of Keys: IMS First Hop Protection

In SIP registration there is a possibility for entity authentication (in 3GPP
system). At the same time new keys are derived (both at terminal side and at
network). For optimal use of resources, we would like to minimize the number
of simultaneously valid keys per user. Clearly we have to allow two keys during
the change process: the current key (set) and the new key (set).

Now we have a problem. Registration message from the user triggers the
creation of new keys on the network side. What if an attacker sends a fake
registration message while the change of keys is ongoing ? Should we ignore
this message ? Both answers have unpleasant consequences: ignoring is bad if
the message is not fake after all but, on the other hand, accepting the message
necessarily increases the number of concurrent keys to be stored.

8.2 PKI Issues

Public Key Infrastructure is an area where many issues are well documented in
the litterature, see e.g. [6] (see also [7] for fundamentals of public key technol-
ogy). In this paper we just list a few interesting issues with PKI and certificates:
How to deliver new root certificates into terminals that are already on the field
? How to introduce client certificates into legacy systems ? Can we utilize exist-
ing authentication and authorization infrastructure ? How to define certificates
applicable to future services ?

8.3 Digital Rights Management Issues

This is another area that has been under extensive study during recent years. A
few points of specific interest in DRM are listed in the following:

Issues with Applying Cryptography in Wireless Systems 215

- User may act as an attacker against his own device.
- Use of global secrets implies unwanted ”break one break all” phenomenon.
- There are difficult backward compatibility issues in DRM.
- With download applications it is OK to get the key (and rights) to the

content afterwards but with streaming applications the key is necessarily needed
in advance.

9 Constraints from Outside

We briefly mention a couple of problems on this area. End-to-end protection is
problematic because of, at least, the following reasons: addressing and routing,
middle proxies, lawful interception, key management.

Meeting lately introduced requirements is always difficult (e.g. Bluetooth
initialization) but it is still good that security is taken into account already in
early phases of system design, hence an iterative process should be used.

10 Conclusions

Some general conclusions can be crystallized:
- Cryptography is a major tool in making wireless systems secure;
- It is nontrivial to apply general-purpose security tools in a new context;
- We cannot ignore massive legacy systems;
- Incremental security enhancements lead to complex solutions;
- Reasonable safety margins can be justified also in deciding which security

features to implement.

References

1. Asokan, N., Niemi, V. and Nyberg K., Man-in-the-middle in tunneled authentica-
tion protocols, Proceedings of 11th Cambridge Workshop on Security Protocols,
Springer Lecture Notes in Computer Science (to appear).

2. Barkan, E., Biham, E. and Keller, N., Instant Ciphertext-Only Cryptoanalysis of
GSM Encrypted Communication, Proceedings of CRYPTO 2003, Springer Lecture
Notes in Computer Science (2003).

3. draft-haverinen-pppext-eap-sim-12, October 2003: ”EAP SIM Authentication”
(work in progress).

4. Blunk, L. and Vollbrecht, J., PPP Extensible Authentication Protocol (EAP), In-
ternet Engineering Task Force, Request for Comments (RFC) 2284.

5. Niemi, V. and Nyberg, K., UMTS security, John Wiley & sons (2003).
6. Gutmann, P., PKI: It’s Not Dead, Just Resting, IEEE Computer 35(8), pp. 41-49,

August 2002.
7. Salomaa, A., Public-Key Cryptography, Second Edition, Springer (1996).

On a Tomographic Equivalence Between

(0,1)-Matrices�

Maurice Nivat

Université Denis Diderot–Case 7014, 2, place Jussieu, F-75251 Paris Cedex 05
mnivat@wanadoo.fr

Abstract. The tomographic problems studied here are associated to
reconstructing a matrix when only some local information is given. We
investigate a problem of discrete tomography via R-null matrices and
prove a result similar to Ryser’s Theorem.

1 Introduction

A very important basic fact occurring often in the present paper is as follows:
every tiling of the plane by translations of a given m × n rectangle is invariant
by one translation. This invariant translation is either the horizontal translation
of length m or the vertical translation of length n (or both in the particular case
of a regular tiling).

Moreover, the following is true: assume that one point of the tiling rectangle
is marked in some way and each tile in the tiling contains a marked point in
the same position. If we then look at the tiled plane through a rectangular
m×n window, exactly one marked point is seen regardless of the position of the
window, see Figure 1.

This last fact is not characteristic of rectangles, but is valid also for all pieces
P with which one can tile the plane by translation as shown in Figure 1. In fact,
a theorem can be stated as:

Theorem 1. Let U be a mapping from Z
2 to {0, 1} and P be a mapping from a

finite subset F of Z2 to {0, 1} such that card{f ∈ F | P (f) = 1} = 1. Then the
two following assertions are equivalent:

(1) ∀z ∈ Z2, card{f ∈ F | U(z + f) = 1} = 1
(2) Z2 = U−1(1)⊕ F ,

where the symbol ⊕ denotes the unambiguous Minkowski sum: C = A⊕B if and
only if:{∀c ∈ C ∃ a ∈ A, b ∈ B, c = a+ b,

∀a1, a2 ∈ A; b1, b2 ∈ B; a1 + b1 = a2 + b2 ⇒ a1 = a2 and b1 = b2.

� Dedicated to Arto Salomaa for his 70th birthday.

J. Karhumäki et al. (Eds.): Theory Is Forever (Salomaa Festschrift), LNCS 3113, pp. 216–234, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

On a Tomographic Equivalence Between (0,1)-Matrices 217

1

1

 1

1

1

1

1

 1

1

1

Fig. 1. Part of a tiling which is invariant by a vertical translation showing two positions
of the window in which appears exactly one 1

The property (1) says that U contains exactly one 1 in each position of the
window F and property (2) says that Z2 is tiled by translation of F , even more
precisely that, if we surround each 1 in U by a copy of F such that the symbol 1
is always in the same position in F , we obtain a tiling of Z2. The notions above
have been generalized in [5] to obtain the notion of a homogeneous bidimensional
sequence.

Definition 1. Mapping U : Z2 → {0, 1} is homogeneous of degree k with respect
to a finite window F if and only if

∀z ∈ Z
2 card{f ∈ F | U(z + f) = 1} = k.

In [5] we proved a rather surprising result.

Theorem 2. Mapping U : Z2 → {0, 1} is homogeneous of degree k with respect
to a rectangle R if and only of there exist k disjoint homogeneous sequences of
degree 1 (with respect to the same R) such that:

U = U1 + U2 + . . .+ Uk

This last result can be nicely rephrased:
If U : Z2 → {0, 1} is homogeneous of degree k with respect to F then one

can color the 1’s with k colors in such a way that in each position of the window
there appears one and only one 1 of each color.

218 Maurice Nivat

Example 1. In Figure 2, the three sequences corresponding to a, c and d are in-
variant by the translation (4, 0) and the fourth one corresponding to b is invariant
by the translation (0, 3).

1

1 1

1

1 11

1

11 1

111

1 1 1 1

1 11 1

1 1

a aa

a a a

a a

b

b

b

b

b

b

c c c

c c

d d

d d d

Fig. 2.

We suspect that Theorem 2 is valid for all exact windows F . By an exact
window we mean a window F such that one can tile the plane by translation
of F . Anyway there exists a sequence U which is homogeneous of degree 1 with
respect to F if and only if F is exact (by Theorem 1) and thus Theorem 2 can
hold only for exact windows. For the time being we are unable to prove Theorem
2 in this more general case.

2 A Decomposition Theorem for Homogeneous Matrices
with Integer Coefficients

We shall deal with matrices rather than sequences. A matrix M of size p× q is
a mapping from

{0, 1, . . . , p− 1} × {0, 1, . . . , q − 1}
into a set of coefficients which will be either {0, 1} or {−1, 0, 1} or N or Z. We
use the notation [p] to denote the set [p] = {0, . . . , p − 1}. The definition of
homogeneity is now slightly changed.

Definition 2. Let R be the rectangle [m]× [n]. The matrix M : [p]× [q]→ Z is
homogeneous of degree k with respect to R if and only if:

∀(x, y) ∈ [p−m+ 1]× [q − n+ 1]∑
{M(x+ i, y + j) | (i, j) ∈ [m]× [n]} = k

Remark that if the set of coefficients is {0, 1} this definition coincides with the
previous definition 1.

On a Tomographic Equivalence Between (0,1)-Matrices 219

The matrixR(M) of size (p−m+1)×(q−n+1) with coefficients R(M)(x, y) =∑{(x + i, y + j) | (i, j) ∈ [m] × [n]} is called the R-projection of a matrix M
with coefficients in Z.

A matrix is homogeneous with respect to R if and only if its R-projection is
constant. We call an matrix R-null if and only if its R-projection is the matrix
0, whose coefficients are all 0.

Theorem 3. A matrix M with coefficients in N, the set of non negative integers,
is homogeneous of degree k with respect to R if and only if it is the sum of k
matrices M1, M2, . . ., Mk with coefficients {0, 1} which are homogeneous of
degree 1.

The proof is very similar to the proof of theorem 2 given in [5] but slightly
more difficult.

Let M and M ′ be two matrices of the same size p× q with coefficients in N.
We say that M ′ is smaller than M if and only if for all (i, j) ∈ [p]× [q]:

M ′(i, j) ≤M(i, j).

In order to prove theorem 3 we show that if M is homogeneous of degree k
with respect to R, there exists a matrix M ′ with coefficients in {0, 1} which is
homogeneous of degree 1 with respect to R and smaller than M . Then we can
subtract M ′ from M to obtain M−M ′ whose coefficients are in N, and obviously
M −M ′ is homogeneous of degree k − 1.

Clearly we can repeat this process and eventually write M as a sum of (0, 1)-
matrices which are homogeneous of degree 1.

Now we need a crucial lemma.

Lemma 1. If M with coefficients in Z is homogeneous with respect to R, then
for all (x, y) ∈ [p]× [q] satisfying (x+m, y + n) ∈ [p]× [q] one has

M(x, y) +M(x+m, y + n) = M(x+m, y) +M(x, y + n).

Proof. Let s =
∑{M(x + i, y) | 1 ≤ i ≤ m − 1} and s′ =

∑{M(x + i, y + n) |
1 ≤ i ≤ m− 1}. We clearly have

M(x, y) + s = M(x, y + n) + s′

and
s+M(x+m, y) = s′ +M(x+m, y + n),

which imply the equality

s− s′ = M(x, y + n)−M(x, y) = M(x+m, y + n)−M(x+m, y).

��

220 Maurice Nivat

(x+m,y)s

s’

a

b c

d

(x,y+n)

(x,y)

(x+m,y+n)

Fig. 3.

Figure 3 helps in visualizing the property of Lemma 1.
We just expressed the fact that the sum of the coefficients in the rectangle

whose left inferior corner is (x, y) is equal to the sum of the coefficients in the
rectangle whose left superior corner is (x, y + n).

In a similar way, the equality of the sums of the coefficients in the 2 rectangles
whose right inferior corner is (x + m, y) and the right superior corner is (x +
m, y + n).

Lemma 1 can be easily extended to get:

Lemma 2. For all (x, y) ∈ [p]× [q] and all α, β ∈ Z the following holds: if M
satisfies the conditions of Lemma 1 and (x + αm, y + βn) belongs to [p] × [q],
one has

M(x, y) +M(x+ αm, y + βn) = M(x, y + βn) +M(x+ αm, y)

Proof. The proof is immediate by symmetry and induction. ��
Proof (The proof of Theorem 3). Assume first that M is invariant by the trans-
lation (m, 0).

Due to the invariance, for all (x, y) ∈ [p]× [q], β ∈ Z we have that if x+βm ∈
[p], then M(x+αm, y) = M(x, y). Then one can find easily a (0, 1)-matrix which
is homogeneous of degree 1 with respect to R and smaller thanM in the following
way:

Take any non-regular coefficients M(x, y); (x, y) ∈ [m]× [n] and set x0 = x.
Now for all β such that y + βn ∈ [q] then exists a strictly positive coefficient
M(xβ, y + βn) with xβ ∈ [m]. This is obvious since∑

{M(x, y + βn) | x ∈ [m]} =
∑
{M(x, y) | x ∈ [m]}

and
∑{M(x, y) | x ∈ [m]} ≥M(x, y) > 0.

Now for each α, β such that (xβ+αm, y+βn) ∈ [p]× [q], all the coefficients
M(xβ + αm, y + βn) are strictly positive and the (0, 1)-matrix M ′ given by

M ′(u, v) =
{

1, if (u, v) = (xβ + αm, y + βn),
0, otherwise.

On a Tomographic Equivalence Between (0,1)-Matrices 221

is smaller than M and can be subtracted from M . The matrix M − M ′ is
homogeneous of degree k − 1 and is also invariant by the translation (m, 0). As
mentioned in the beginning of the proof, it follows that a homogeneous matrix
having coefficients in N which is invariant by (m, 0), can be expressed as a sum
of (0, 1)-matrices which are homogeneous of degree 1 and invariant by (m, 0).

Assume now M is not invariant by the translation (m, 0). Then there exists
(x, y) such that M(x, y) and M(x + m, y) are different. We can assume that
M(x, y) > M(x+m, y) (the argument in case M(x, y) < M(x+m, y) is exactly
the same).

We can show that for all β such that y + βn ∈ [q], M(x, y + βn) is strictly
positive. This is an immediate consequence of Lemma 2, since

M(x, y + βn) +M(x+m, y) = M(x, y) +M(x+m, y + βn)

implies that

M(x, y + βn)−M(x+m, y + βn) = M(x, y) +M(x+m, y)

is strictly positive.

2 2 1 1

1

21 2 1

1 3 2 1 2

1

1 2 2 1

2 1 11 1

1

2 2

1 1 1 1 1

Fig. 4.

Let us set y0 = y. Consider any column x + αm, x+ αm ∈ [p] and compare
the sum ∑

{M(x, y − h+ j) | j ∈ [n]}
of n consecutive coefficients in the column x containing M(x, y) for some h < n
with the sum ∑

{M(x+ αm, y − h+ j) | j ∈ [n]}
The sums are equal. Then two cases are possible:

– ∀j ∈ [n] M(x+ αm, y − h+ j)) = M(x, y − h+ j). This implies, by Lemma
2, that M(x+ αm, j) = M(x, j) for all j ∈ [q].

222 Maurice Nivat

1

2 1 1 2 1

1

1 2 2 1

1 2 1 1 1

1

1 2 2 1

1 2

1

1 1

Fig. 5.

1

1 1 1 1

1 2 2

2 1 1

1 2 2

2 1

Fig. 6.

We can then take yα = y and be sure that

M(x+ αm, yα + βn)

is strictly positive for all β such that yα + βn ∈ [q].
– There exists j such that M(x, αm, y − h+ j) > M(x, y − h+ j).

Then if we set yα = y − h+ j we are sure by an argument used above that
M(x+ αm, yα + βn) is strictly positive for all β such that yα + βn ∈ [q].

Now the matrix M ′ defined as

M ′(u, v) =
{

1, if (u, v) = (x+ αm, y + βn),
0, otherwise.

is a (0, 1)-matrix which is homogeneous of degree 1, invariant by the translation
(0, n) and smaller than M .

This completes the proof. ��

On a Tomographic Equivalence Between (0,1)-Matrices 223

Example 2. Let m = n = 3. The matrix in Figure 4 homogeneous of degree
5. The circled element can only belong to a homogeneous matrix of degree 1
invariant by the horizontal translation. We easily find one (we have the choice
between 2) and subtract it from M to obtain matrix in Figure 5. The matrix in
Figure 5 is homogeneous of degree 4.

The circled element can only belong to a ”vertical” homogeneous submatrix.
We find one and delete it to obtain matrix of Figure 6. It is homogeneous of
degree 3. This last matrix can be decomposed in only one sum of 2 ”horizontal”
and one ”vertical” homogeneous of degree 1.

We can now easily prove a theorem of decomposition for homogeneous ma-
trices with coefficients in Z and R-null matrices.

Theorem 4. A matrix with coefficients in Z is homogeneous of degree k with
respect to R if and only if it is a difference of two sums of homogeneous (0, 1)-
matrices which are homogeneous of degree 1 with respect to R.

The number of elements in these two sums can be bounded by:

k +
∑
{M(x, y) |M(x, y) < 0, (x, y) ∈ [p]× [q]}

and
k +

∑
{M(x, y) |M(x, y) > 0, (x, y) ∈ [p]× [q]}

Proof. Let M be a homogeneous matrix with coefficients in Z. Consider a neg-
ative coefficient M(x, y) = −a, a > 0.

Take any (0, 1)-matrix M ′ which is homogeneous of degree 1 and satisfies
M ′(x, y) = 1. M + aM ′ is a matrix with coefficients in Z which is homogeneous
of degree k + a and satisfies:

(M + aM ′)(i, j) ≥M(i, j) for all (i, j) ∈ [p]× [q].

Moreover, M + aM ′ has at least one negative coefficient less than M .
Repeating this process until all the negative coefficients disappear we can

write M as the difference M1 −M2 where M1 and M2 have non-negative coeffi-
cients, are homogeneous, M1 of degree k+

∑{−M(x, y) |M(x, y) < 0 (x, y) ∈
[p]× [q]}.

It may be more economical to have all the positive coefficient disappear if
the sum of the positive coefficients is less than the absolute value of the sum of
the negative coefficients.

WhenM has been written as the differenceM1−M2 we obtain the theorem by
decomposing M1 and M2 into sums of homogeneous (0, 1)-matrices of degree 1.

��

3 R-null Matrices

Clearly if M and M ′ have the same R projection then M -M ′ is R-null.
Studying R-null matrices is a natural way to study the equivalence between

matrices defined by the equality of their R-projection.

224 Maurice Nivat

We can see the problem of constructing a (0, 1)-matrix with a given R-
projection as a problem of discrete tomography: we are given a family of local
pieces of information on a set of pixels distributed in a rectangle and the problem
is to retrieve this information.

The first problem of discrete tomography appearing in the literature is the
problem of constructing a (0, 1)-matrix with given row sums and column sums.
Solutions to this problem were given by Ryser and, independently by Gale.

Let r0, . . . , rp−1 and c0, . . . , cq−1 be two sequences of non negative integers
such that ∑

{ri | i ∈ [p]} =
∑
{cj | j ∈ [q]}.

Can one find a (0, 1)-matrix of size p× q such that

∀i ∈ [p] we have
∑
{M(i, j) | j ∈ [q]} = ri

and
∀j ∈ [q] we have

∑
{M(i, j) | i ∈ [p]} = cj .

The ri’s are called row sums (in more recent literature the vector 〈r0, . . . , rp−1〉
is called the horizontal projection) and the cj ’s are called columns sums (the
vector 〈c0, . . . , cq−1〉 is the vertical projection). What interests us here is the
study of the equivalence defined by:

M is equivalent to M ′ if and only if M and M ′ have the same horizontal and
vertical projection (Ryser).

An elementary Ryser transformation amounts to exchange in a matrix two
1’s in position (x, y), (x+ h, y+ l) with two 0’s in position (x+h,y) and (x,y+l),
see Figure 7.

1

0 1

1 0

1 0

0

Fig. 7.

Clearly such a transformation leaves the two projections invariant. The nice
result of Ryser is that if M and M ′ are equivalent then one can transform M
into M ′ by a sequence of elementary transformations.

The matrix in Figure 8 is obtained by performing two sequences Ryser ele-
mentary transformations.

Introducing matrices with coefficients in {−1, 0, 1}we can state Ryser’s result
as follows.

On a Tomographic Equivalence Between (0,1)-Matrices 225

1

0 1

1 0

0

Fig. 8.

Theorem 5 (Ryser’s theorem). Every matrix with coefficients in {−1, 0, 1}
whose horizontal and vertical projections are the constant vector equal to 0 is a
sum of matrices of the form:

M ′(x, y) = 0 but for (x, y) ∈ {(x0, y0), (x1, y1), (x0, y1), (x1, y0)} for some
x0, x1, y0, y1 such that x0 �= x1 and y0 �= y1 for which one has

M ′(x0, y0) = M ′(x1, y1) = 1

and
M ′(x0, y1) = M ′(x1, y0) = −1.

Here we can prove a very similar theorem. Let us say that a row {M(x, y) |
y ∈ [q]} of matrix M is m-null if and only if the sum of m consecutive entries of
that row is always 0. We define n-null columns in the same way.

Note that a m-null row is invariant by the translation (m, 0). Obviously
a1 + a2 + . . .+ am = a2 + a3 + . . .+ am + am+1 imply a1 = am+1.

Adding a m-null row or a n-null column to a given matrix M obviously
does not change the R-projection. Moreover, if M and M ′ have the same R-
projections then one can obtain M ′ from M by adding to M a number of m-null
rows and n-nulls columns.

We can now state the following theorem.

Theorem 6. The set of all matrices whose all entries are 0’s except for a m-
null row or a n-null column, is a generating subset of the vector space of R-null
matrices.

Remark 1. Note that the set of m-null rows and n-null columns is not a basis of
the vector space for they are not linearly independent as proved by the example
in Figure 9.

Proof. We first give a very easy one.

226 Maurice Nivat

1 −1 1 1−1

−1 −1 −11 1

1 1 1−1 −1

−1 −1 −11 1

1 −1 1−11

Fig. 9.

In the decomposition of a R-null matrix in a sum of homogeneous (0, 1) or
(0,−1) -matrices of degree 1 or −1 it is clear that the number of (0, 1)-matrices
will be the same as the number of (−1, 0)-matrices. Thus M is a sum

M = M1 + . . .+Mk

of matrices of the form H −H ′, where both H and H ′ are (0, 1)-matrices homo-
geneous of degree 1.

We then prove that each matrix H −H ′ is a sum of m-null rows and n-null
columns. Consider first the case H and H ′ are both invariant by the translation
(m, 0). The figures illustrate the proof.

1

1 1 1 1

−1 −1 −1 −1

1 1 1 1 1

−1 −1 −1 −1

1 1 1 1

−1 −1 −1 −1 −1

1 1 1

Fig. 10.

On a Tomographic Equivalence Between (0,1)-Matrices 227

We can make all the (nonzero) rows start with a 1 or a -1 in the first column
by adding m-null rows. To the matrix of Figure 10 we add the set of m-null rows
shown in Figure 11 to obtain the sum in Figure 12 which is obviously composed
of n-null columns.

If the rows containing the 1’s and -1’s are the same, then obviously all the
rows are m-null.

Now consider H −H ′ where H is invariant by (m, 0) and H ′ is invariant by
(0, n), see Figure 13. Note that the two 0’s which appear come from a 1 and a
−1 occurring in the same position.

1

1 −1 1 −1 1 −1 1 −1

−1 1 −1 1 −1 1 −1 1 −1

−1 1 −1 1 −1 1 −1 1

1 −1 1 −1 1 −1 1 −1 1

1 −1 1 −1 1 −1 1 −1

Fig. 11.

By adding m-null rows we can have all the rows containing 1’s start in the
first column (Figure 14). As a result, we get Figure 15.

Now it suffices to have all the columns containing −1’s contain −1’s in the
rows containing 1’s, we can achieve that by adding n-null columns to obtain a
matrix which has only m-nulls rows. ��

Since addition is commutative and a matrix whose rows (resp. columns) are
all m-null (resp. n-null) is invariant by the translation (m, 0) (resp (0, n)) we
can state:

Corollary 1. Every R-null matrix M is the sum of M1 and M2 where M1 is
(m× 1)-null and M2 is (1× n)-null.

4 An Alternate Proof of Theorem 6

Consider an m× n-null matrix M of size p× q. We can add to M a matrix M1

with m-null rows in order that M +M1 has only 0’s in its leftmost column.

228 Maurice Nivat

1

−1

1

−1

1

−1

1

1

−1

1

−1

1

−1

1

1

−1

1

−1

1

−1

1

1

−1

1

−1

1

−1

1

1

−1

1

−1

1

−1

1

Fig. 12.

1

−1 −1

1 1 −1 1 −1 1

−1 −1

1 1 −1 1 −1 1 1

−1 −1

1 0 0 1

−1 −1

1 1 −1 1 −1

Fig. 13.

If M(i, 0) = ai is different from 0 we add one row

ai 0 . . . − ai 0 . . . ai 0 . . . − ai 0 . . .

where ai appears in the positions βm, β ∈ N, and −ai in the positions βm+ h
for some h between 1 and m− 1. Clearly such a row is m-null.

M1(i, ∗) is a row of this type for all i such that M(i, 0) �= 0, and is a line full
of 0’s if M(i, 0) = 0.

On a Tomographic Equivalence Between (0,1)-Matrices 229

−1

1 −1 1 −1 1 −1 1 −1 1

1 −1 1 −1 1 −1 1 −1 1

1 −1 1 −1 1 −1 1

Fig. 14.

1

−1 −1

1 1 −1 1 −1 1 1

−1 −1

1 1 −1 1 −1 1 1

−1 −1

1 1 −1 1 −1 1 1

−1 −1

1 1 −1 1 −1 1

Fig. 15.

The first column of M+M1 is full of 0’s, and this implies that all the columns
of rank βm, β ∈ N, of M +M1 are m-null columns. Since (M +M1)(i, 0) = 0,
for all i, ∑

{(M +M1)(i+ h, j + k) | h ∈ [n], 1 ≤ k ≤ m− 1} = 0

and, since
∑{(M +M1)(i+h, j+1+ k) | h ∈ [n], k ∈ [m]} = 0, we have for all i∑

{(M +M1)(i+ h,m) | h ∈ [n]} = 0.

230 Maurice Nivat

The sum of n consecutive coefficients in the column of rank m is equal to 0 and
obviously this is also true for all the columns of rank βm, β ∈ N.

Let M1 be the matrix whose columns are full of 0’s but for the column of
rank βm which is the opposite of the n-column of rank βm of M +M1. Then in
M +M1 +M1 all the columns of rank βm are full of 0’s.

We can repeat the process and find M2 whose rows are m-null such that in
M +M1 +M1 +M2 the column 1 is full of 0’s, and we can keep the columns of
rank βm full of 0’s.

Then the columns of rank βm + 1, β ≥ 1, are, by the same argument as
above n-null columns. Whence we can find M2 whose columns are n-null and
such that in M +M1 +M1 +M2 +M2 the columns of rank βm and βm+ 1 are
full of 0’s.

Eventually we can write M as a sum of a matrix with m-null rows and a
matrix with n-null columns.

Example 3. Let M be 4 × 3-null as in Figure 16. One can see that the columns
4 and 8 of M +M1 are 3-null. In Figure 17, the column 5 of the last matrix is
3-null. In the last matrix of Figure 18, the two remaining columns are 3-null.

M :
1

−1

−1

2

4

4 3

−2

1

−1

−2

−2

−3

2

−1

5

1

−1

2

1

−1

−2

1

1

−2

3

−1

−1

−3

−3

−3

M :

2

11

2 2

−2

4

1

2 2 −3

−1

−2

−1

−4

2

1

4

−22

−1

−2 2 2−2

−2

−1

−1 1 −1

2 −2

4−4 −4

−2

M+M :1

−2

−2

4

1

1

2

−1

−3 −3 3

2

−2

−1

−1

−2

−3

4

−1

4

−3

−1

4 −1

−1

1

3

−2

−2

3

−1

−2

−1

3

Fig. 16.

Eventually we have

M = (−M1 −M2 −M3) + (−M1 −M2 −M3)

where the first matrix has only 4-null rows and the second has only 3-null
columns.

On a Tomographic Equivalence Between (0,1)-Matrices 231

M :
2

M :
1 M+M +1 M :

1

M+M +1 M +
1

M :
2

1

−2

4

1

1

2

−3 −3

2

−2

−1

−1

−2

−1

−1

1

3

−2

−2 3

−3

−4

1

−4

3

1

3

−4

1

−3

2

1

1

4

2

−2

−1

2

−2

−2

2

−22

1

−2

2

2 −2

4

1

−3

−1

−2 1

3

−1

−2

−2

1

1

−1

1

2

2

−1

2

−3

1

Fig. 17.

M :
3 3−M :

M :
2

M :
2

M +
2

+M+M +1 M
1

−2

−2

1

−2

−2

1

3 3−3 −3

−1

1

−1

1

−1

1

1

4

−2

1

−3

−2

2

−2

3 −3

−2

2

−2

2

2

−2 −2

−2

1

1

Fig. 18.

232 Maurice Nivat

= +

1

1

1

−1

−1

1−1 −1 1

1 −1 −11

1 −1−1 1

1 1

1 1

−1

−1

−1

−1

1 1−1

−1 −11

−1 11

1

1

1

−1

−1

−1

Fig. 19.

Remark 2. We can describe a basis of the vector space of p× q-null matrices.

We take all the matrices that have only one row which is not full of 0’s and
this row is of the form

(1 0 . . . 1 0 . . .)(1 0 . . . 1 0 . . .) . . .

with 1’s in position βm and βm+ h for some h between 1 and m− 1.
There are (m− 1)q such matrices, m− 1 for each of the q rows. We take all

the matrices which have only one column which is not full of 0’s and this column
is of the form

(. . .)T (0 1 . . . 0 1)T (. . . 0 1 . . . 0 1)T

with 1’s in positions αn and αn+ k for some k between 1 and n− 1.
There are (n− 1)p such matrices, n− 1 for each of the p columns. The set of

these matrices certainly generates the whole vector space.
But we can express the last p− 1 columns as linear combination of the other

columns and of the rows, see Figure 19, and we have a decomposition as in
Figure 20.

The dimension of the vector space is then

(n− 1)p+ (m− 1)q − (p− 1)(q − 1)

and this is compatible with the fact that if we know the elements in the (p− 1)
first columns and the (q− 1) first rows of a p× q-null matrix, then we know the
matrix.

On a Tomographic Equivalence Between (0,1)-Matrices 233

1

1

1

−1

−1

1 1−1

−1 −11

−1 11

1

1

1

−1

−1

−1

= +

+

−1 −1

1 1

−1−1

1 1

−1−1

1 1 1

−1

1

−1

1

1

−1

1

−1

1

−1

1

1

−1

1

1

−1

−1

−1

1

−1

1

−1

−1

1

−1

1

−1

−11

−1 1

1 −1

−1

−1

1

1

Fig. 20.

Thanks

The author did part of this work in the Centro di Modelisacion Matematica
of the University of Chile. He wishes to thank Eric Goles, the president of the
CONICYT and Rafael Correa, the director of the CMM who made his stay there
possible. The author had very fruitful discussions in the CMM with Eric Goles
and Ivan Rapaport. The work was completed in the University of Siena and
the author thanks Simone Rinaldi and Andrea Frosini who have made his satay
possible Indeed the origin of the paper lies in discussions with the late Alberto
del Lungo, professor in the university of Siena who died suddenly on June 1st
2003.

References

1. H.Ryser , Combinatorial properties of matrices of zeros and ones, Canad. J. Math.
9, 371-377 (1957).

234 Maurice Nivat

2. D. Gale, A theorem on flows in networks, Pacif. J. Math., 7 (1957) 1073-1082.
3. G. T. Herman and A. Kuba (eds.), Discrete Tomography: Foundations, Algorithms

and Applications, Birkhauser Boston, Cambridge, MA (1999).
4. R. Tijdeman and L. Hajdu, An algorithm for discrete tomography, Linear Algebra

and Its Applications, 339 (2001) 147-169.
5. M. Nivat, Sous-ensembles homogènes de Z

2 et pavages du plan, C. R. Acad. Sci.
Paris, Ser. I 335 (2002) 83-86.

P Systems with Tables of Rules

Gheorghe Păun1,2, Mario J. Pérez-Jiménez2, and Agust́ın Riscos-Núñez2

1 Institute of Mathematics of the Romanian Academy
PO Box 1-764, 014700 Bucureşti, Romania
2 Research Group on Natural Computing

Department of Computer Science and Artificial Intelligence
University of Sevilla

Avda. Reina Mercedes s/n, 41012 Sevilla, Spain
gpaun,marper,ariscosn@us.es

Abstract. In the last time, several efforts were made in order to remove
the polarization of membranes from P systems with active membranes;
the present paper is a contribution in this respect. In order to compensate
the loss of power represented by avoiding polarizations, we introduce
tables of rules: each membrane has associated several sets of rules, one of
which is non-deterministically chosen in each computation step. Three
universality results for tabled P systems are given, trying to use rules of
as few as possible types. Then, we consider tables with obligatory rules
– rules which must be applied at least once when the table is applied.
Systems which use tables with at most one obligatory rule are proven to
be able to solve SAT problem in linear time. Several open problems are
also formulated.

1 Introduction

In membrane computing, the P systems with active membranes have a special
place, because of the fact that they provide biologically inspired means to solve
computationally hard problems: by using the possibility to divide membranes,
one can create an exponential working space in a linear time, which can then
be used in a parallel computation for solving, e.g., NP-complete problems in
polynomial or even linear time. Details can be found in [7], [8], as well as in the
comprehensive page from the web address http://psystems.disco.unimib.it.

One of the important ingredients of P systems with active membranes is the
polarization of membranes: besides a label, each membrane also has an “elec-
trical charge”, one of + (positive), − (negative), 0 (neutral). These electrical
charges correspond only remotely to biological facts; by sending ions outside,
cells and cell compartments can get polarizations, but this is not a very com-
mon phenomenon. Starting from this observation and also as a mathematical
challenge, in the last time several efforts were made to avoid using polarizations.

However, the question seems not to be a simple one, and the best result
obtained so far was to reduce the number of “electrical charges” to two; this is
achieved in [1], where both the universality and the possibility of solving SAT

J. Karhumäki et al. (Eds.): Theory Is Forever (Salomaa Festschrift), LNCS 3113, pp. 235–249, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

236 Gheorghe Păun, Mario J. Pérez-Jiménez, and Agust́ın Riscos-Núñez

in linear time are proven for P systems with active membranes and only two
polarizations. When completely removing the polarizations, similar results are
obtained (see [2], [3]) only by compensating the loss of power (of “programming”
possibilities) by using additional ingredients, such as the possibility of changing
the labels of membranes, the division of non-elementary membranes, etc.

The present paper goes into the same direction of research: we get rid of po-
larizations and we “pay” this by structuring the sets of rules associated with each
membrane by considering tables of rules, like in Lindenmayer systems. Specifi-
cally, several sets of rules are associated with each membrane, and in each step of
a computation we non-deterministically choose one of these sets, and its rules are
used in the maximally parallel manner. The use of tables can have a biological
motivation, in the same way as the tables from L systems theory have a biologi-
cal origin: the change of environmental conditions (for instance, of seasons) can
select specific evolution rules for different times (different seasons).

The use of tables proves to be helpful in what concerns the computing power:
we get universality for systems of a rather reduced forms, with only a few types
of rules used, and without polarizations.

An important problem remains unsolved: can tables compensate polarizations
also in what concerns the possibility to solve hard problems in polynomial time?
A possible negative answer to this problem would be a very nice finding: in
view of the result from [1], it would follow that passing from one polarization
(all membranes neutral) to two polarizations makes possible the step from the
complexity class P to NP.

If, however, we add a further ingredient – at the first sight not very powerful
– to tabled P systems, namely designating in each table obligatory rules, which
should be used at least once when applying the table, then we can solve SAT in
linear time. The construction uses at most one obligatory rule in each table.

2 P Systems with Active Membranes

We assume the reader to be familiar with basic elements of membrane computing,
e.g., from [7], but, for the sake of completeness, we recall here the definition of
the class of P systems we work with, those with active membranes (and electrical
charges).

Such a system is a construct

Π = (O,μ,w1, . . . , wm, R),

where:

1. m ≥ 1 (the initial degree of the system);
2. O is the alphabet of objects;
3. μ is a membrane structure, consisting of m membranes, labeled in a one-to-

one manner with elements of H = {1, 2, . . . ,m};
4. w1, . . . , wm are strings over O, describing the multisets of objects placed in

the m regions of μ;

P Systems with Tables of Rules 237

5. R is a finite set of developmental rules, of the following forms:
(a) [a→ v]e

h,
for h ∈ H, e ∈ {+,−, 0}, a ∈ O, v ∈ O∗

(object evolution rules, associated with membranes and depending on
the label and the charge of the membranes, but not directly involving
the membranes, in the sense that the membranes are neither taking part
in the application of these rules nor are they modified by them);

(b) a[]e1
h → [b]e2

h ,
for h ∈ H, e1, e2 ∈ {+,−, 0}, a, b ∈ O
(in communication rules; an object is introduced in the membrane, pos-
sibly modified during this process; also the polarization of the membrane
can be modified, but not its label);

(c) [a]e1
h → []e2

h b,
for h ∈ H, e1, e2 ∈ {+,−, 0}, a, b ∈ O
(out communication rules; an object is sent out of the membrane, possi-
bly modified during this process; also the polarization of the membrane
can be modified, but not its label);

(d) [a]e
h → b,

for h ∈ H, e ∈ {+,−, 0}, a, b ∈ O
(dissolving rules; in reaction with an object, a membrane can be dis-
solved, while the object specified in the rule can be modified);

(e) [a]e1
h → [b]e2

h [c]e3
h ,

for h ∈ H, e1, e2, e3 ∈ {+,−, 0}, a, b, c ∈ O
(division rules for elementary membranes; in reaction with an object, the
membrane is divided into two membranes with the same label, possibly
of different polarizations; the object specified in the rule is replaced in
the two new membranes by possibly new objects).

We have omitted the rules for dividing non-elementary membranes, usually iden-
tified as being “of type (f)”.

It is worth noting that the rules of all types are non-cooperative (and that
there are no further ingredients involved, such as a priority relation, for con-
trolling the spplication of rules). In the customary definition of P systems with
active membranes, the initial membranes of μ are not necessarily labeled in a
one-to-one manner, but there is no loss of generality in the assumption that the
labels are unique: we can relabel the membranes with the same label and then
duplicate the necessary rules. Moreover, because in what follows we only con-
sider that by membrane division we obtain membranes with the same label, the
labels present in the system are always from the set {1, 2, . . . ,m} present at the
beginning (maybe some of them used several times, because of the division of
membranes). Therefore, the set H of labels is specified by μ, it can be omitted
when specifying the system.

The rules of type (a) are applied in the parallel way (all objects which can
evolve by such a rule should do it), while the rules of types (b), (c), (d), (e) are
used sequentially, in the sense that one membrane can be used by at most one
rule of these types at a time. In total, the rules are used in the non-deterministic

238 Gheorghe Păun, Mario J. Pérez-Jiménez, and Agust́ın Riscos-Núñez

maximally parallel manner: all objects and all membranes which can evolve,
should evolve. Only halting computations give a result, and the result is the
number of objects expelled into the environment during the computation; the
set of numbers computed in this way by the various halting computations in Π
is denoted by N(Π).

By NOPm,n,p(pol3, a, b, c, d, e) we denote the family of sets N(Π) computed
as sketched above by systems starting with at most m membranes, using mem-
branes of at most n types, at most p membranes being simultaneously present,
and using all types of rules; when rules of a certain type are not used the corre-
sponding letter a, b, c, d, e will be missing. Also, when membrane division rules
are not used, we will specify only the number of membranes in the initial con-
figuration (hence, only m) as a subscript of NOP . The parameter pol3 indicates
the fact that one uses three polarizations.

Further details can be found in [7] – including the proof of the following result.
(We denote by REG,CF,CS,RE the families of regular, context-free, context-
sensitive, and of recursively enumerable languages. In general, for a family FL of
languages,NFL denotes the family of length sets of languages in FL. Therefore,
NRE is the family of Turing computable sets of natural numbers.)

Theorem 1. NOP3(pol3, a, b, c) = NRE.

The number of polarizations were decreased to two in [1]; with the previous
notations, the result can be written as:

Theorem 2. NOP2(pol2, a, c) = NRE.

Note that the result from Theorem 1 was improved at the same time in the
number of polarizations, the number of membranes, and the number of types of
rules used.

In [3] and [2] rules of types (a) − (e) without polarizations were considered.
Because “no polarization” means “neutral polarization”, we add the subscript 0
to the previous letters identifying the five types (a0)− (e0) of rules.

The power of polarizationless P systems with active membranes is not pre-
cisely known, but it was shown in [2] that they are able to compute at least the
Parikh images of languages generated by matrix grammars without appearance
checking.

Because the notion of a matrix grammar will be also used below, we introduce
it here in its general form.

A matrix grammar (with appearance checking) is a constructG = (N,T, S,M,
F), where N and T are disjoint alphabets, S ∈ N , M is a finite set of sequences
of the form (A1 → x1, . . . , An → xn), n ≥ 1, of context-free rules over N ∪ T
(with Ai ∈ N, xi ∈ (N ∪ T)∗, in all cases), and F is a set of occurrences of rules
in M (N is the nonterminal alphabet, T is the terminal alphabet, S is the axiom,
while the elements of M are called matrices).

For w, z ∈ (N ∪ T)∗ we write w =⇒ z if there is a matrix (A1 → x1,
. . . , An → xn) in M and the strings wi ∈ (N ∪ T)∗, 1 ≤ i ≤ n + 1, such that

P Systems with Tables of Rules 239

w = w1, z = wn+1, and, for all 1 ≤ i ≤ n, either wi = w′
iAiw

′′
i , wi+1 = w′

ixiw
′′
i ,

for some w′
i, w

′′
i ∈ (N ∪ T)∗, or wi = wi+1, Ai does not appear in wi, and the

rule Ai → xi appears in F . (The rules of a matrix are applied in order, possibly
skipping the rules in F if they cannot be applied – therefore we say that these
rules are applied in the appearance checking mode.)

The language generated by G is defined by L(G) = {w ∈ T ∗ | S =⇒∗ w}.
The family of languages of this form is denoted by MATac. If the set F is empty,
then the grammar is said to be without appearance checking.

It is known that CF ⊂ MAT ⊂ MATac = RE and NREG = NCF =
NMAT ⊂ NCS (for instance, the one-letter languages in MAT are known to
be regular, [6]).

A matrix grammar G = (N,T, S,M,F) is said to be in the binary normal
form if N = N1 ∪N2 ∪ {S,#}, with these three sets mutually disjoint, and the
matrices in M are in one of the following forms:

1. (S → XA), with X ∈ N1, A ∈ N2,
2. (X → Y,A→ x), with X,Y ∈ N1, A ∈ N2, x ∈ (N2 ∪ T)∗, |x| ≤ 2,
3. (X → Y,A→ #), with X,Y ∈ N1, A ∈ N2,
4. (X → λ,A→ x), with X ∈ N1, A ∈ N2, and x ∈ T ∗, |x| ≤ 2.

Moreover, there is only one matrix of type 1 (that is why one uses to write it
in the form (S → X0A0), in order to fix the symbols X,A present in it), and
F consists exactly of all rules A → # appearing in matrices of type 3; # is a
trap-symbol, because once introduced, it is never removed. A matrix of type 4
is used only once, in the last step of a derivation.

For each matrix grammar there is an equivalent matrix grammar in the binary
normal form. Details can be found in [4] and in [11].

3 Tables of Rules

In the “standard” P systems with active membranes there is specified only one
set of rules; because the membranes are present in the rules, we precisely know
where each rule is to be applied. A possible generalization is to consider several
sets of rules – for uniformity with L systems, we call them tables – such that in
each step of a computation a table is used, non-deterministically chosen (the rules
of the selected table are applied in the maximally parallel manner, as mentioned
in the previous section).

This case corresponds to having global tables; a more relaxed variant is to
consider local tables, sets of rules associated with each membrane.

Specifically, for each membrane i we can consider sets Ri,1, . . . , Ri,ki of rules,
for some ki ≥ 1, all of the rules from sets Ri,j , 1 ≤ j ≤ ki, involving membrane
i. In a step of a computation, we apply the rules from one of the tables associ-
ated with each membrane, as usual, in the maximally parallel non-deterministic
manner with respect to the chosen table.

If we are allowed to “evolve” a region by means of a table for which no rule
is actually applied, then the local tables can be combined in global tables, hence

240 Gheorghe Păun, Mario J. Pérez-Jiménez, and Agust́ın Riscos-Núñez

in this case the local version is weaker than the global one. However, there is no
difference from the computational point of view (at least in the cases investigated
in the next section): systems with local tables (and restricted types of rules) are
equivalent with Turing machines; moreover, the proofs are based on systems
with one or two membranes, with the “main work” of two-membranes systems
done in the inner membrane, hence choosing tables which change nothing in one
of the regions do not change the generated set of numbers.

In what follows we will consider only local tables, that is why we choose a
more restricted – also, more natural – definition of a transition step: if there are
tables by which a region can effectively evolve (at least a rule of these tables
can be effectively applied), then one of these tables must be chosen. Otherwise
stated, we cannot choose a table with no applicable rule if there are tables with
applicable rules. This restriction both corresponds to the notions of parallelism
and synchronization, basic in membrane computing, and it is also useful in the
proofs below.

In systems with tables (either local or global) we have two levels of non-
determinism: in each step we first non-deterministically choose one table (in
the local case, associated with each membrane), and then we use the rules of
the chosen table in a non-deterministic manner (observing the restriction of
maximal parallelism for the chosen table). The standard definition of P systems
corresponds to the case where we have only one table (at the level of the whole
system).

The fact that we use (local) tables is indicated by adding tab to the notations
from the previous section.

We do not know whether the number of tables associated with membranes
matters (that is, whether it induces an infinite hierarchy of the computed sets
of numbers) or normal form theorems like that known for ET0L systems (two
tables are enough, see [9]) are true also in our case. In view of this open problem
it could be better to indicate also the maximal number of tables used, writing
tabs for using at most s tables, but we do not deal with this aspect here.

The usefulness of using tables is intuitively obvious, because by clustering
the rules in “teams of rules” we can control in a more precise way the work of
the system. This is illustrated also by the following simple example: consider
the system

Π = ({a, b}, []1, a, R1,1, R1,2, R1,3),
R1,1 = {[a→ aa]1},
R1,2 = {[a→ b]1},
R1,3 = {[b]1 → a}.

After using n ≥ 0 times the first table (thus producing 2n copies of a), we can
end the computation by using once the second table, and then 2n times the third
one. Consequently, N(Π) = {2n | n ≥ 1} ∈ NOP1(tab, a0, c0), a set of numbers
which is not in NMAT .

P Systems with Tables of Rules 241

4 Universality Results

The usefulness of tables is illustrated also by the results below: the computational
universality is obtained without polarizations for various reduced combinations
of types of rules.

The first result uses rules of the first three types (hence neither membrane
dissolution nor membrane division operations).

Theorem 3. NOP2(tab, a0, b0, c0) = NRE.

Proof. We only (have to) prove the inclusion ⊇, and to this aim we use the
equality NRE = MATac. Let us consider a matrix grammar with appearance
checking G = (N, {a}, S,M, F) in the binary normal form, hence with N =
N1 ∪ N2 ∪ {S,#} and with matrices of the four types mentioned in Section
2. All matrices of M are supposed to be labeled in an injective manner with
mi, 1 ≤ i ≤ n (hence i uniquely identifies the matrix). Each terminal matrix
(X → λ,A → x) is replaced with (X → f,A → x), where f is a new symbol
(the label of the matrix remains unchanged).

We construct the tabled P system with active membranes, Π , with the com-
ponents:

O = N1 ∪N2 ∪ {Zi, Z
′
i, 〈i〉 | 1 ≤ i ≤ n} ∪ {a, a′, e, f,#},

μ = [[]2]1,
w1 = λ,

w2 = X0A0e, where (S → X0A0) is the initial matrix of G,

and the following tables (by U we denote the set N1 ∪ {Zi, Z
′
i, 〈i〉 | 1 ≤ i ≤ n}).

1. For each matrix mi : (X → Y,A→ x) in M of types 2 or 4, we consider the
tables

R2,i = {[X → Zi]2, [A]2 → []2〈i〉, [e]2 → #}
∪ {[α→ #]2 | α ∈ U},

R′
2,i = {[Zi → Z ′

i]2, 〈i〉[]2 → [〈i〉]2}
∪ {[α→ #]2 | α ∈ U},

R′′
2,i = {[Z ′

i → λ]2, [〈i〉 → xY]2}
∪ {[α→ #]2 | α ∈ U}.

2. For each matrix mi : (X → Y,A→ #) in M of type 3, we consider the table

R2,i = {[X → Y]2, [A→ #]2}
∪ {[α→ #]2 | α ∈ U}.

3. We also consider the following tables:

R2,f = {[f → λ]2}
∪ {[α→ #]2 | α ∈ U ∪N2},

R2,a = {[a]2 → []2a
′, [#→ #]2},

R1 = {[a′]1 → []1a, [#→ #]1}.

242 Gheorghe Păun, Mario J. Pérez-Jiménez, and Agust́ın Riscos-Núñez

We have the equality N(Π) = {n | an ∈ L(G)}. Indeed, we start with the
multiset X0A0e in the central membrane; assume that we have here a multiset
Xwe for someX ∈ N1 and w ∈ (N2∪{a})∗. There is only one table for membrane
1, sending out a copy of a (provided that there are copies of a′ in the skin
region), and using the trap-rule # → # provided that the object # is present;
in this latter case, the computation will never stop. If applied in membrane 2
when Xwe is here, the table R2,f will introduce the trap-object #, and this
happens also if we use any table of the forms R′

2,i, R
′′
2,i. Thus, we can apply

only a table of type R2,i for mi a matrix of M . That matrix should be either
of the form mi : (X → Y,A → x) (of type 2 or of type 4), or of the form
mi : (X → Y,A → #) (of type 3): if the first rule of the matrix is α → β with
α �= X , then the trap-object is introduced.

The case of a matrix of type 3 is simpler: if A is present, then the trap-object
is introduced, and the computation will never stop (because of the table R2,a,
which can be used forever). If A is not present, then we just change X into Y .
Thus, the simulation of the matrix mi of type 3 is correct.

If we choose to simulate a matrix of types 2 or 4, then it must have the
second rule of the form A → x, for A as specified by the table R2,i: if the rule
[A]2 → []2〈i〉 is not used, thus “keeping busy” the membrane, then the rule
[e]2 → # must be used, and the computation will never stop (table R1 can be
applied forever).

In the next step we have to continue the simulation of the matrix mi by
using the corresponding table R′

2,i. This is the only table which can be applied
without introducing the trap-object #. In this way, 〈i〉 comes back to membrane
2, and Zi is replaced by Z ′

i. In the next step, again only one table can be used
without introducing the trap-object, namely R′′

2,i. It erases the object Z ′
i and

replaces 〈i〉 with xY , thus completing the simulation of the matrix.
At any moment, if any object a is present in membrane 2, then table R2,a

can be used and a is sent out (first transformed into a′ in the skin region).
The system is returned to a configuration with the contents of membrane

2 as in the beginning, hence the process can be iterated. When the object f
is introduced, no table R2,i, R

′
2,i, R

′′
2,i can be used. By means of R2,f we check

whether any symbol from N2 is present, hence whether the derivation in G is
terminal. The computation in Π ends by sending out all copies of a, hence N(Π)
equals the length set of the language L(G). ��

In the previous proof, the role of rules of type (b0), (c0) (besides sending the
result outside the system) was to ensure that only one object A is replaced by x,
thus correctly simulating the second rule of a matrix (X → Y,A → x) of types
2 or 4. This can be done also by using rules of type (e0).

Theorem 4. NOP2,2,3(tab, a0, c0, e0) = NRE.

Proof. As above, we consider a matrix grammar with appearance checking G =
(N, {a}, S,M, F) in the binary normal form, with the matrices ofM labeled in an
injective manner with mi, 1 ≤ i ≤ n, and each terminal matrix (X → λ,A→ x)
replaced with (X → f,A→ x), where f is a new symbol.

P Systems with Tables of Rules 243

We now construct the tabled P system with active membranes Π , with the
components:

O = N1 ∪N2 ∪ {Zi, 〈i〉 | 1 ≤ i ≤ n} ∪ {a, a′, d, e, f,#},
μ = [[]2]1,
w1 = λ,

w2 = X0A0e, where (S → X0A0) is the initial matrix of G,

and the following tables (by U we denote the set N1 ∪ {Zi, 〈i〉 | 1 ≤ i ≤ n}).
1. For each matrix mi : (X → Y,A→ x) in M of types 2 or 4, we consider the

tables

R2,i = {[X → Zi]2, [A]2 → [〈i〉]2[d]2,
[d→ #]2, [e]2 → [#]2[#]2}

∪ {[α→ #]2 | α ∈ U ∪ {a}},
R′

2,i = {[Zi → λ]2, [〈i〉 → xY]2, [d→ #]2}
∪ {[α→ #]2 | α ∈ U ∪ {a}}.

2. For each matrix mi : (X → Y,A→ #) in M of type 3, we consider the table

R2,i = {[X → Y]2, [A→ #]2, [d→ #]2}
∪ {[α→ #]2 | α ∈ U ∪ {a}}.

3. We also consider the following tables:

R2,f = {[f → λ]2, [d→ #]2}
∪ {[α→ #]2 | α ∈ U ∪N2},

R2,d = {[d]2 → d, [a]2 → []2a
′, [#→ #]2},

R1 = {[a′]1 → []1a, [#→ #]1}.
The equality N(Π) = {n | an ∈ L(G)} follows in a similar way as in the

previous proof, this time with the interplay of rules [A]2 → [〈i〉]2[d]2 and
[e]2 → [#]2[#]2 ensuring that the second rule of each matrix of type 2 or
4 is correctly simulated (used exactly once): if the second rule is used, then the
computation never stops, hence [A]2 → [〈i〉]2[d]2 must be used. In this way,
membrane 2 is divided. In the first copy of the membrane we have the object
〈i〉, which will complete the simulation of the matrix. In the second copy of
the membrane, the one containing the object d, we cannot use any table which
contains the rule d→ #, hence the only continuation is by using the table R2,d.
This dissolves the membrane, and its objects, left free in the skin region, will no
longer evolve. The matrices of type 3 are again simulated in only one step of a
computation in Π . All copies of object a are immediately sent out of membrane
2 (to prevent their duplication when dividing the membrane), and from the skin
region are sent out of the system. We leave the details to the reader and conclude
that the system correctly simulates the matrix grammar G. ��

244 Gheorghe Păun, Mario J. Pérez-Jiménez, and Agust́ın Riscos-Núñez

One of the difficulties in the previous proofs was to inhibit the parallelism of
using the rules of type (a0). In membrane computing, the usual way to do this is
by using catalysts, distinguished objects which never evolve, but can enter rules
of the form ca→ cv, where a is a single object, which evolves under the control
of the catalyst c. This idea can be considered also for P systems with active
membranes, allowing rules of type (a0) of the form [ca → cv]

i
, where c is a

catalyst, a is an object and v a multiset of objects. (When specifying a system
with catalysts, the set C of catalysts is explicitly given after the set of objects.)
We indicate the use of catalysts by writing catr in the notation for families of
numbers computed by systems of a given type as above; r indicates the fact that
at most r catalysts are used.

The previous results have the following counterpart for the catalytic case –
with only two types of rules being used, and with only one membrane (note that
one catalyst suffices).

Theorem 5. NOP1(tab, cat1, a0, c0) = NRE.

Proof. We consider again a matrix grammar with appearance checking G =
(N, {a}, S,M, F) in the binary normal form, with each terminal matrix (X →
λ,A → x) replaced with (X → f,A → x), where f is a new symbol, and we
construct the tabled P system with catalysts Π , with the components:

O = N1 ∪N2 ∪ {a, c, d, f,#},
C = {c},
μ = []1,
w1 = X0A0d, where (S → X0A0) is the initial matrix of G,

and the following tables.

1. For each matrix mi : (X → Y,A→ x) in M of types 2 or 4, we consider the
table

R1,i = {[X → Y]1, [cA→ cx]1, [cd→ c#]1}
∪ {[Z → #]1 | Z ∈ N1 ∪ {f}}.

2. For each matrix mi : (X → Y,A→ #) in M of type 3, we consider the table

R1,i = {[X → Y]1, [A→ #]1}
∪ {[Z → #]1 | Z ∈ N1 ∪ {f}}.

3. We also consider the following tables:

R1,f = {[f → λ]1, [d→ λ]1}
∪ {[α→ #]1 | α ∈ N1 ∪N2},

R1,a = {[a]1 → []1a, [#→ #]1}.

P Systems with Tables of Rules 245

This time, the matrices mi of types 2 and 4 are simulated by a single table,
of type R1,i: the first rule must be used (that is, the symbol X must be present),
otherwise the trap-object is introduced; similarly, the rule cA → cx must be
used, otherwise the catalyst will evolve together with the available object d and
again the trap-object is introduced. Each matrix mi of type 3 is simulated by the
corresponding table R1,i. After introducing the object f , no table as above can
be used (without introducing the trap-object), hence we have to use R1,f , which
checks whether the derivation inG is terminal. At any time, the copies of object a
are sent out by means of the table R1,a. Consequently, N(Π) = {n | an ∈ L(G)},
and this completes the proof. ��

The previous result is relevant in view of the fact that transition P systems
with only one catalyst (not with active membranes) are not known to be uni-
versal, while the universality was proved for the case of using two catalysts [5].

5 Tables with Obligatory Rules

The idea of distinguishing some rules of each table and imposing that these
rules are applied at least once when the tables are selected has at least two
motivations. First, this is a way to also ensure the fact that a selected table does
not leave unchanged the objects from the region where it is applied. Then, it
reminds the matrices from matrix grammars, whose rules are all applied when
applying a matrix. However, having several obligatory rules in the same table
is a way to make the system cooperative: if both a → u and b → v must be
simultaneously used at least once, then ab → uv must be used at least once
(but the two cases are not equivalent, because besides evolving one a and one
b, by rules a → u or b → v we can separately evolve further copies of a or of b,
respectively).

That is why in what follows we allow at most one obligatory rule in each
table. Such a rule is marked with a dot; when the table is used, its obligatory
rule must be used at least once, otherwise the table is not allowed to be chosen.

This apparently small change in the definition of tabled P systems is powerful
enough in order to lead to fast solutions (making use of membrane division) to
computationally hard problems.

Theorem 6. Tabled P systems with active membranes using obligatory rules (at
most one in each table) can solve SAT in linear time; the construction is uniform,
and the system is deterministic.

Proof. Let us consider a propositional formula γ = C1 ∧ · · · ∧ Cm, consisting of
m clauses Cj = yj,1 ∨ · · · ∨ yj,kj , 1 ≤ j ≤ m, where yj,i ∈ {xl,¬xl | 1 ≤ l ≤ n},
1 ≤ i ≤ kj (there are used n variables). Without loss of generality, we may
assume that no clause contains two occurrences of some xl or two occurrences
of some ¬xl (the formula is not redundant at the level of clauses), or both xl

and ¬xl (otherwise such a clause is trivially satisfiable, hence can be removed).
Therefore, in each clause there are at most n literals.

246 Gheorghe Păun, Mario J. Pérez-Jiménez, and Agust́ın Riscos-Núñez

We codify γ, which is an instance of SAT with size parameters n and m, by
the multiset

w(γ) = {sj,i | yj,r = xi, for some 1 ≤ i ≤ n, 1 ≤ j ≤ m, 1 ≤ r ≤ kj}
∪ {s′j,i | yj,r = ¬xi, for some 1 ≤ i ≤ n, 1 ≤ j ≤ m, 1 ≤ r ≤ kj}.

(We replace each variable xi from each clause Cj with sj,i and each negated
variable ¬xi from each clause Cj with s′j,i, then we remove all parentheses and
connectives. In this way we pass from γ to w(γ) in a number of steps which is
linear with respect to n ·m.)

We construct the P system Π with the following components:

O = {ai | 1 ≤ i ≤ n+ 1} ∪ {ti, fi | 1 ≤ i ≤ n} ∪ {ri, r′i | 1 ≤ i ≤ m}
∪ {di | 1 ≤ i ≤ m+ 1} ∪ {ci | 0 ≤ i ≤ 2n+m+ 3}
∪ {sj,i, s

′
j,i | 1 ≤ j ≤ m, 1 ≤ i ≤ n} ∪ {yes, no},

μ = [[[]3]2]1,
w1 = λ, w2 = c0, w3 = a1,

R1,1 = {[yes]1 → []1yes, [no]1 → []1no},
R2,1 = {[dm+1]2 → yes, [c2n+m+3]2 → no}

∪ {[ci → ci+1]2 | 0 ≤ i ≤ 2n+m+ 2},
R3,d = {[ai]3 → [ti]3[fi]3 | 1 ≤ i ≤ n},
R3,i,t = {[ti •→ ai+1]3}

∪ {[sj,i → rj]3, [s′j,i → λ]3 | 1 ≤ j ≤ m}, for each i = 1, 2, . . . , n,

R3,i,f = {[fi
•→ ai+1}

∪ {[s′j,i → rj]3, [sj,i → λ]3 | 1 ≤ j ≤ m}, for each i = 1, 2, . . . , n,

R3,0 = {[an+1
•→ d1]3}

∪ {[rj → r′j]
3
| 1 ≤ i ≤ m},

R3,j = {[r′j •→ λ]3}
∪ {[di → di+1]

3
| 1 ≤ i ≤ m}, for each j = 1, 2, . . . ,m,

R3,m+1 = {[dm+1]3 → []3dm+1}.

There is no object in the skin membrane, while region 2 contains only the
counter c0, which will continuously increase its subscript, by means of table R2,1.
The “main work” is done in membrane 3. In the beginning, we have here the
object a1, hence the only applicable table is R3,d, which divides the membrane,
at the same time expanding the object a1 to the truth values t1 = true and
f1 = false of variable x1. In the next step, the only tables which can be applied
in the two membranes with label 3 are R3,1,t and R3,1,f : the obligatory rules
select the tables in a precise way. At the same time with the passage from t1, f1
to copies of a2, we also introduce all clauses which are satisfied by t1 and f1,
respectively (encoded by the variable r1). The process continues now with a2,

P Systems with Tables of Rules 247

then with a3, and so on, until expanding all variables and introducing all clauses
satisfied by these truth-assignments.

Therefore, after 2n steps we get 2n membranes 3, containing the clauses
satisfied by the 2n possible truth-assigments for the n variables.

In step 2n+ 1 the only table which can be applied for membranes 3 is R3,0:
an+1 is replaced with d1 (which will check whether there is any membrane where
all clauses are satisfied), and all rj are primed.

From now on, for at most m steps, we use the tables R3,j , 1 ≤ j ≤ m.
(Because these tables use primed versions of objects rj , they were not applicable
before using table R3,0 – and this was the reason of priming.) Each of these
tables removes the occurrences of one r′j ; because this operation is done by an
obligatory rule, this is a way to check that the respective r′j is present. At the
same time, the subscript of the object d from each membrane 3 increases by
one. If in a given membrane 3 there are copies of r′j for all j = 1, 2, . . . ,m, then
the respective object d reaches the subscript m + 1, which indicates the fact
that the corresponding truth-assignment has satisfied all clauses of γ. If a given
membrane 3 does not contain copies of all r′j , 1 ≤ j ≤ m, then that membrane
cannot evolve m steps, hence the local object d remains of the form dj with
j ≤ m.

Simultaneously, the object from region 2 arrives at the form c2n+m+1.
If at least one membrane 3 contains the object dm+1 (hence the formula is

satisfiable), then in step 2n + m + 2 we use the table R3,m+1 and the object
dm+1 is sent to membrane 2 (at the same time, in region 2 we get c2n+m+2). If
no membrane 3 sends out the object dm+1, hence the formula is not satisfiable,
then the objects dj with j ≤ m remain inside these membranes – but c2n+m+1

evolves to c2n+m+2 in region 2.
Now, in step 2n+m+ 3, if any object dm+1 is present in region 2, then one

of them will dissolve membrane 2, and will produce the object yes, which is left
free in the skin region; in the next step, this object will leave the system, thus
signaling that the formula is satisfiable. Because membrane 2 is dissolved, the
object c2n+m+3 (obtained in step 2n+m+3) also remains free in the skin region,
where it cannot evolve any more. If no object dm+1 is present in region 2, then
this membrane is not dissolved, c will get the subscript 2n+m+ 3 and then in
step 2n+m+ 4 will exit membrane 2 transformed in no; in the next step, this
object exits the systems, signaling that the formula is not satisfiable.

Thus, either we get yes outside the system in step 2n+m+ 4, or no in step
2n+m+ 5, and these objects correctly indicate whether or not γ is satisfiable.

The system Π can be constructed in polynomial time by a Turing machine,
starting from n and m, and it works in a deterministic manner (after each
reachable configuration there is at most one next configuration which can be
correctly reached). ��

If we are more interested in the time our system works than in the time
of constructing it or in its deterministic behavior, then the answer to a given
instance of SAT can be obtained in n + m + 4 steps, by considering a system

248 Gheorghe Păun, Mario J. Pérez-Jiménez, and Agust́ın Riscos-Núñez

constructed in a semi-uniform manner (starting directly from an instance of the
problem) in the following way.

For a given formula γ as above, for l = 1, 2, . . . , n, we denote

sat(tl) = {rj | there is 1 ≤ i ≤ kj such that yj,i = xl},
sat(fl) = {rj | there is 1 ≤ i ≤ kj such that yj,i = ¬xl}.

Then, we construct the system Π with:

O = {ai, ti, fi | 1 ≤ i ≤ n} ∪ {ri | 1 ≤ i ≤ m}
∪ {bi | 0 ≤ i ≤ n+m+ 2} ∪ {ci | 0 ≤ i ≤ n+m+ 3}
∪ {yes, no},

μ = [[[]3]2]1,
w1 = λ, w2 = c0, w3 = b0a1a2 . . . an,

R1,1 = {[yes]1 → []1yes, [no]1 → []1no},
R2,1 = {[bn+m+2]2 → yes, [cn+m+3]2 → []2no}

∪ {[ci → ci+1]2 | 0 ≤ i ≤ n+m+ 2},
R3,i = {[ai]3

•→ [ti]3[fi]3}
∪ {[bj → bj+1]3 | 0 ≤ j ≤ n− 1}, for each i = 1, 2, . . . , n,

R3,n+1 = {[bn •→ bn+1]3}
∪ {[ti → sat(ti)]3, [fi → sat(fi)]3 | 1 ≤ i ≤ n},

R3,n+1+i = {[ri •→ λ]3}
∪ {[bn+j → bn+j+1]

3
| 1 ≤ j ≤ m}, for each i = 1, 2, . . . ,m,

R3,n+m+2 = {[bn+m+1]3 → []3bn+m+2}.
This time, in the first n steps we divide membrane 3 again and again, by

means of the obligatory rules of tables R3,i, 1 ≤ i ≤ n, which expand the
objects ai to the truth values ti = true and fi = false of variable xi. The order
of using tables R3,i is arbitrary, but after n steps we get the same configuration
irrespective of this order: 2n membranes 3, containing the 2n truth-assignments
of the n variables, as well as the object bn (at the same time, in membrane 2 we
have obtained cn).

In step n+ 1, in region 3 we can only apply R3,n+1, which replaces bn with
bn+1 and each ti, fi by the clauses satisfied by these truth values (specifically, ti
is replaced by sat(ti) and fi by sat(fi)).

From now on, for at most m steps, we use the objects bn+j+1, 1 ≤ j ≤ m, in
the same way as objects dj were used in the previous proof, in order to check
whether or not at least one truth-assignment has satisfied all clauses. If this is
the case, then at least one membrane 3 will contain the object bn+m+1, which
will exit to membrane 2, will dissolve it in step n+m+ 3, and will produce the
object yes, which then leave the system. If not, cn+m+3 will exit membrane 2
(in step n+m+ 4) transformed in no, which will exit the system in one further
step.

P Systems with Tables of Rules 249

The system Π can be constructed in polynomial time by a Turing machine,
starting from γ (only the tables R3,i directly depend on the formula), and the
system is clearly confluent.

6 Final Remarks

Contributing to the “campaign” of removing polarizations from P systems with
active membranes, we have obtained several universality results for systems with-
out polarizations, but having the rules structured in tables. When tables with
(at most one) obligatory rules are used, NP-complete problems can be solved
in linear time – this is illustrated with SAT problem.

Two important problems have remained open: (i) are systems without po-
larizations and without tables (maybe with catalysts) universal? (ii) can NP-
complete problems be solved in polynomial time by means of tabled P systems
with active membranes without polarizations (and without obligatory rules)?

Acknowledgements. The support of this research through the project
TIC2002-04220-C03-01 of the Ministerio de Ciencia y Tecnoloǵıa of Spain, cofi-
nanced by FEDER funds, is gratefully acknowledged.

References

1. A. Alhazov, R. Freund, Gh. Păun, P systems with active membranes and two po-
larizations, in Proc. Second Brainstorming Week on Membrane Computing, Sevilla,
February 2004, TR 01/04 of Research Group on Natural Computing, Sevilla Uni-
versity, 2004, 20–36.

2. A. Alhazov, L. Pan, Polarizationless P systems with active membranes, Grammars,
7, 1 (2004).

3. A. Alhazov, L. Pan, Gh. Păun, Trading polarizations for labels in P systems with
active membranes, submitted 2003.

4. J. Dassow, Gh. Păun, Regulated Rewriting in Formal Language Theory, Springer,
Berlin, 1989.

5. R. Freund, L. Kari, M. Oswald, P. Sosik, Computationally universal P systems
without priorities: two catalysts are sufficient, Theoretical Computer Science, in
press.

6. D. Hauschild, M. Jantzen, Petri nets algorithms in the theory of matrix grammars,
Acta Informatica, 31 (1994), 719–728.

7. Gh. Păun, Computing with Membranes: An Introduction, Springer, Berlin, 2002.
8. M. Pérez-Jiménez, A. Roméro-Jimenez, F. Sancho-Caparrini, Teoŕıa de la comple-

jidad en modelos de computación celular con membranas, Kronos Editorial, Sevilla,
2002.

9. G. Rozenberg, A. Salomaa, The Mathematical Theory of L Systems, Academic
Press, New York, 1980.

10. G. Rozenberg, A. Salomaa, eds., Handbook of Formal Languages (3 volumes),
Springer, Berlin, 1997.

11. A. Salomaa, Formal Languages, Academic Press, New York, 1973.

Some Properties of Multistage Interconnection

Networks

Azaria Paz

Computer Science Department
Technion—IIT

Haifa, 32000 Israel
and The Netanya Academic College—Israel

Abstract. In a previous paper [Pa2002] the author developed a theory
of decomposition into prime factors of multistage interconnection net-
work. Based on that theory some new properties of such networks are
investigated and proved.

1 Preliminary

Multistage Interconnection Networks (MIN’s) play an important role in the de-
sign of the hardware and operating systems of computers, in particular of parallel
computers, and they enable efficient communication algorithms between proces-
sors and memories, see e.g. [L92]. We shall be concerned in this paper mainly
with one such MIN, the Butterfly network, some of its isomorphic networks and
some of its extensions. In general, MIN’s can be described by an n-layered graph
defined as below

Definition 1. An n-layered graph is a graph G = (X1, X2, ..., Xn, E2, E3 · · ·En)
where the Xi’s are sets of vertices, and the Xi vertices are connected only to the
Xi+1 vertices by the edges Ei+1.

Clearly every layer of an n-layered graph can be depicted as a bipartite graph
with Xi, Xi+1 as vertices and Ei+1 as edges. Thus an n-layered graph is a con-
catenation of n−1 bipartite graphs and every such bipartite graph will be called
a stage. Even and Litman introduced in [EL97] a technique, the “Cross Product”
technique, and showed that this technique enables the representation of several
well known n-layered networks as a cross product of simple such networks. This
author extended their technique in [Pa2002] into a full decomposition theory.
The basic definitions and properties and some main results from [Pa2002] are
reproduced below.

Definition 2. Let B1 = (X1, Y1, E1) and B2 = (X2, Y2, E2) be two bipartite
graphs. Their cross-product is the bipartite graph G3 = (X3, Y3, E3) such that
X3 = X1 ×X2, Y3 = Y1 × Y2 (‘×’ represents the Cartesian product operation)
and ((x1i, x2j), (y1k, y2l)) ∈ E3 if and only if (x1i, y1k) ∈ E1 and (x2j , y2l) ∈ E2.

We shall use the notation ‘×’ for the cross-product operation of bipartite
graphs as defined above. For a given bipartite graph B = (X,Y,E) we shall refer
to X and Y as the floor and the ceiling, respectively, of B.

J. Karhumäki et al. (Eds.): Theory Is Forever (Salomaa Festschrift), LNCS 3113, pp. 250–258, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Some Properties of Multistage Interconnection Networks 251

Definition 3. Let B1 and B2 be two bipartite graphs. We shall say that B1 is
isomorphic to B2 (notation: B1 ∼ B2) if there are 1−1 and onto mappings ψ and
φ from X1 to X2 and from Y1 and Y2 such that (xi, yj) ∈ E1, iff (ψ(xi), φ(yj)) ∈
E2.

It is easy to see that the cross product operation is associative and commu-
nicative up to isomorphism of the resulting graphs.

Definition 4. Let G1 =(X1, ..., Xn, E2, ..., En) and G2 =(X ′
1, ..., X

′
n, E

′
2, ..., E

′
n)

be two n-layered graphs. G1×G2 = G3 = (X ′′
1 , ..., X

′′
n , E

′′
2 , ..., E

′′
n) is the n-layered

graph such that

(Xi, Xi+1, Ei+1)× (X ′
i, X

′
i+1, E

′
i+1) = (X ′′

i , X
′′
i+1, E

′′
i+1) .

Definition 5. Two n-layered graphs G1 = (X1, . . . , Xn, E2, . . . , En) and G2 =
(X ′

1, . . . , X
′
n, E

′
2, . . . , E

′
n) are isomorphic if for all i, 1 ≤ i ≤ n− 1, the bipartite

graphs Bi = (X1, Xi+1, Ei+1) and B′
i = (X ′

i, X
′
i+1, E

′
i+1) are isomorphic and

the isomorphisms ψi and φi can be defined in a way such that for all 2 ≤ i ≤
n− 1 ψi(Xi) = φi−1(Xi−1) (see Definition 3).

Remark. The notion of isomorphism introduced here differs from the standard
definition of graph isomorphism in that its is sensitive to the identities of the
vertices of the graph. The notion introduced here would have deserved a different
name. Nevertheless, we choose to use this name in order to comply with its name
common in the literature investigating multilayered graphs.

It follows from the definitions that the graph G = G1XG2X, . . . ,XGk is iso-
morphic to all graphs of the form Gπ(1)X · · ·XGπ(k) where π is any permutation
of (1, . . . , k).

2 The BCP Family of Graphs

Consider the primitive simple bi-partite graphs labeled a, b, c and 1 shown below:

a :
0∧

0 1
; b :

0 1∨
0

; c :
0 1
| || |
0 1

; 1 :
0
||
0

DenoteΣ = {a, b, c}, let σ ∈ Σ and letBσ be the graph whose label is σ. Then
for any word w ∈ Σ∗, w = σ1 · · ·σk w represents the graph Bw = Bσ1×· · ·×Bσk

.
Let Bσ = (Xσ, Yσ, Eσ) and Bw = (Xw, Yw, Ew).

Then, by our definitions Xw = Xσ1×· · ·×Xσk
and Yw = Yσ1 ×· · ·×Yσk

. We
shall label the vertices of Xw and Yw according to the following procedure: The
vertices in Xσi and Yσi are labeled by either 0 or 1 as per the definition of Bσi .
The vertices in Xw and Yw correspond to k-tuples of zeroes and ones. Order the
vertices in Xw and Yw according to the lexicographic order of the corresponding
k-tuples and then label those vertices with consecutive integers, starting with

252 Azaria Paz

0 1 2 3

0 1 2 3

5 6 74

4 5 6 7

Fig. 1. The graph B

0, according to the order of their n-tuples, the notation (Xw) and (Yw) will be
used to denote the sets Xw and Yw when ordered as above.

The BCP family of graphs is defined as L1 = {B : B = Bw, w ∈ Σ∗}.
An Example. Consider the graph B given above.

The reader can verify that B = Bcbca = BcBbBcBa.
For the sake of simplicity we shall represent graphs in the BCP family by

their label, e.g., the graph Ba2bc2 = Ba ×Ba ×Bb ×Bc ×Bc will be denoted by
w = a2bc2 ∈ Σ∗.

3 The n-LCP Family of Graphs

Let w1, w2, ..., wn be a sequence of graphs in the BCP family such that the size
of the ceiling of wi is equal to the size of the floor of wi+1 for 1 ≤ i ≤ n − 1.
We can construct an n-layered graph from the above graphs by identifying the
vertices in the floor of wi+1 with the vertices in the ceiling of wi in their given
order.

Denote this graph by the “page”⎡⎢⎢⎢⎣
w1

w2

...
wn

⎤⎥⎥⎥⎦
Definition 6. The n-LCP (n-layered cross-product) family of graphs is the set
of all graphs of the form ⎡⎢⎣w1

...
wn

⎤⎥⎦
such that wi ∈ BCP for 1 ≤ i ≤ n and the vertices in the floor of wi+1 (whose
number is equal to the number of vertices in the ceiling of wi) are identified with
the vertices in the ceiling of wi, in their given order.

Some Properties of Multistage Interconnection Networks 253

An Example. The n-layered Ω network [La75] can be described as follows:

1. The number of vertices in the floor and ceiling of every layer is equal to 2n.
2. All layers have the i-th vertex in the floor, i = 1 . . . 2n, connected to the

vertices 2i − 1 and 2i modulo 2n in the ceiling. It is easy to see that the
omega network is represented by the page, containing n words, below.⎡⎢⎣a c

n−1 b
...

a cn−1 b

⎤⎥⎦
⎫⎪⎬⎪⎭n rows

4 Prime n-Factors

We define below a subset of O(n2) graphs in the n-LCP family which have the
“primality” property, i.e., all the graphs in the family can be represented as
cross-products of those factors and the primes themselves cannot be factorized
into simpler graphs.

Definition 7. A prime graph in the n-LCP family is a graph which can be
represented by a page as below:

a. Choose a row 0 ≤ i ≤ n and write a in row i. Choosing the row 0 means that
a is omitted altogether from the page.

b. Assume we choose position i for a. Choose a row i < j ≤ n + 1 and write
b in row j. Choosing the n+ 1 row means that b is omitted altogether from
the page.

c. Write 1 (1 represents the graph ||) in rows k, k < i or k > j, if such rows
exist (i.e., if i > 1 or j < n) and write c in rows t, i < t < j if such rows
exist (i.e., if j > i+ 1).

Several primes in n-LCP are shown below.⎡⎢⎢⎣
c
c
c
c

⎤⎥⎥⎦
⎡⎢⎢⎣

1
a
b
1

⎤⎥⎥⎦
⎡⎢⎢⎣

1
1
1
a

⎤⎥⎥⎦
⎡⎢⎢⎣
a
c
c
b

⎤⎥⎥⎦
Remark. As the number of possible locations for a is n + 1 and for the i-th
location of a, there are n− i+ 1 possible locations for b, we have that the total
number of n-primes is

∑n+1
j=1 j = (n+1)(n+2)

2 . It follows from the definition that
the primes do not factor into simpler factors, if we disregard the trivial prime
consisting of a page with a single 1 in every row, which is not included in the
above definition.

254 Azaria Paz

The Graphs corresponding to the primes described above are shown below.

5 Previous Results

The following results have been obtained in [Pa2002].

– A polynomial algorithm is provided (and its correctness proved) that enables
the factorization of any graph in n-LCP into prime factors. The complexity
of the algorithm is shown to be O(n2 log(E)) where n is the number of layers
of the graph and E is the maximal number of edges in a layer of the graph.

– The following theorem, showing that the factorization provided by the algo-
rithm is unique, up to isomorphism, is also proved in [Pa2002].

Theorem 1. Let N1 and N2 be isomorphic networks in n-LCP. Let N1 = f1 ×
· · ·×fk1 , N2 = g1×· · ·×gk2 be two factorizations of N1 and N2, respectively, into
prime factors, not necessarily distinct. Then k1 = k2, and the two factorizations
contain the same factors with the same multiplicity.

In the sequel we shall use the notation below.
Notation. Consider the prime graphs in the n-LCP family as described in Def-
inition 7. We shall denote those graphs as below:
Xi,j , 1 ≤ i ≤ j < n, denotes the diamond shaped-graph with an a at layer i, a b
at layer j+1, c’s between the a and the b and ones below the b and above the a.
Xi,n, 1 ≤ i ≤ n, denotes the fork-shapes graph with an a at layer i, c’s below it
and ones above it Y1,j , 1 ≤ i ≤ j ≤ n, denotes the Y -shaped graph with a b at
layer j, c’s above it and ones below it. Sn is the prime with c in all its layers.

Examples: The Baseline Network

The Baseline network ([WF80]) can be described recursively as follows. The one
layered Baseline has two vertices in its floor and in its ceiling and both floor
vertices are connected to both ceiling vertices. The (i + 1)-layered Baseline is
constructed from two identical i-layered baselines set on layers 2 to i+1. The first
layer set on top of the two i-layered baselines is equal to the (constant) layer of

Some Properties of Multistage Interconnection Networks 255

the Ω network. Thus the 3-layered baseline and n-layered baseline representation
is shown below.

a c c b
c a c b
c c a b

a cn−1 . . . b
c a cn−2 b
...

...
cn−1 . . . a b

3-layered n-layered

Applying the factorization algorithm we get for the n-layered Baseline BL(n)
the factorization below:

BL(n) = X1,n ×X2,n × · · · ×Xn,n × Y1,n × Y1,n−1 × · · · × Y1,1

The Butterfly network [L92] can be described by

a b cn−1

c a b cn−2

...
cn−1 a b

and decomposes as:

BY (n) = X1,n × · · · ×Xn,n × Y1,1 × · · · × Y1,n

In a similar way one can show that the Ω network decomposes as:

Ω(n) = Xn,n × · · · ×X1,n × Y1,n × · · · × Y1,1

Thus, the three networks, the Omega, the Butterfly and the Baseline decompose
into the same factors and are therefore isomorphic.

6 Some New Results

As shown in the previous Sections 3 and 5 the Omega network, the Baseline
network and the Butterfly network have the same factorization consisting of all
the Y -shaped factors (the Y1,i factors) and all the fork-shaped factors (The Xi,n

factors), and therefore are isomorphic. In fact any network factorizing into a per-
mutation of the above factors is isomorphic to the Butterfly network. We shall
denote all the networks that are isomorphic to the Butterfly by B-networks.
While, as mentioned above, the order of the factors in any B-network is im-
material, thus order becomes relevant when B-networks are combined. We shall
consider two types of combinations which have been studied in the literature.

(a) Two identical networks connected in tandem i.e. the networks are combined
in a way such that the ceiling of the top layer of one network is identified
with the floor of the bottom layer of the second. If H is a B-network, then
we shall denote this operation as H/H .

256 Azaria Paz

(b) Two identical networks are connected in a way such that one network is
connected to the mirror image of the second network where the floor of the
bottom layer of one network is identified with the ceiling of the top layer of
the mirror image (i.e. top-bottom reversal) of the second network. We shall
denote this connection as H/H̃ (H̃ denotes the mirror, top down reversal,
of H).

A well know combined network is the Beneś network [L92]. The Beneś network
can be described as H/H̃ where H is the Baseline network (see description in
Sect. 5). An important property of the Beneś network is that it is rearrangeable,
i.e. for any mapping π of the inputs to the outputs it is possible to construct
edge-disjoint paths in the network linking the i-th vertex in the floor of the
network to the π(i)-th vertex in the ceiling of the network (see [L92, Theorem
3.10, p.452]). It is well known that the Beneś network is isomorphic to BY/B̃Y ,
where BY is the Butterfly network (of the same order). See e.g. [EL97]. Based
on the theory of decomposition into prime factors of networks described in Sect.
5, we can now generalize the isomorphism range and prove the theorem below.

Theorem 2. Let H1(n) and H2(n) be any two n-layered B-networks. Then
H1(n)/H̃1(n) is isomorphic to H2(n)/H̃2(n).

Proof (of theorem). As mentioned before the set of factors of any n-layered B-
network H(n) contains the Y1,i and the Xi,n, 1 ≤ i ≤ n, factors and no other
factors. In the mirror image of H(n) the Y1,i factors will transform into Xn−i+1,n

factors, the Y1,j factors will transform into Xn−j+1 factors, and the order of the
corresponding factors in H̃(n) is the same as the order of the source factors in
H(n). The factors generated in H(n)/H̃(n) are depicted below where, for the
sake of saving space, we represent the prime factors in transposition, as rows
instead of columns, ()m representing a prime with m layers.

(i) A factor Xin in H(n) represented as (1, . . . , 1,
i
a, c, . . . , c)

T

n of H(n) generates

the factor (c, . . . , c,
n−i+1

b , 1, . . . , 1)
T

n in H̃(n). Those two factors combine

in H(n)/H̃(n) into the factor (1, . . . , 1,
i
a, c, . . . , c,

2n−i+1

b , 1, . . . , 1)
T

2n whose
label is Xi,2n−i (see definitions in Sect. 5).

(ii) A factor Y1,j of H(n) represented as (c, . . . , c,
j

b, 1, . . . , 1)
T

n generates the

factor (1, . . . , 1,
n−j+1
a , c, . . . , c)

T

n of ˜H(n). Those factors do not combine in
H(n)/ ˜H(n) but rather “stretch out” into the factors (c, . . . , cjb, 1, . . . , 1)T

2n

and (1, . . . , 1,
2n−j+1
a , c, . . . ,)

T

2n whose labels are Y1j and X2n−jh,2n respec-
tively. All in all, the set of all factors of H(n)/ ˜H(n), for any n-layered
B-network H consists of the following factors:
(i) the diamond shaped factors Xi,2n−i 1 ≤ i ≤ n
(ii) The Y -shaped factors Y1,j , 1 ≤ j ≤ n
(iii) The fork shaped factors X2n−j+1,2n, 1 ≤ j ≤ n.

Some Properties of Multistage Interconnection Networks 257

Thus all the 2n-layered networks H(n)/ ˜H(n) such that H(n) is an n-layered
B-networks are isomorphic. The theorem is thus proved. ��

It was also mentioned in the literature that the H/H̃ combination is not
isomorphic to the H/H combination for some B-networks (e.g. the Butterfly)
while for some other networks the above combinations are isomorphic (e.g. the
Baseline network—see [EL97]). We provide now a characterization of the B-
networks H such that H/H̃ is isomorphic to H/H .

Definition 8. Let H be an n-layered B-network. Assume that the order of the
fork-shaped factors in the factorization of H is Xi1,n, Xi2,n, . . . , Xin,n and the
order of the Y shaped factors is Y1,j1, Y1,j2, . . . , Y1,jn. H will be called a match-
ing network if (i1, i2, . . . , in) = (jn, jn−1, . . . , j1). H will be called touching if
(i1, i2, . . . , in) = j1, j2, . . . , jn).

Theorem 3. Let H be an n-layered B-network. Then H/H is isomorphic to
H/H̃ if an only is H is matching.

Remark 1. The reader can verify that the Baseline network and the Butterfly
network described in Sect. 5 are matching and touching correspondingly.

The proof of Theorem 3 is similar to the proof of Theorem 2. The reader can
verify that, if and only if H is matching, then the order of the Y -shaped factors
in H̃ generated by the fork shaped factors in H is the same as the order of the
Y -shaped factors in H and that the set of factors of H/H is equal to the set
of factors of H/H̃ which was shown in the proof of Theorem 2, given that H is
matching.

Corollary 1. Let H1 and H2 be two n-layered B-networks. Then H1/H̃1 is iso-
morphic to H2/H̃2 and, if and only if H2 is matching, then H1/H̃1 ∼ H2/H̃2 ∼
H2/H2. The power of the Theorems 2,3 and their corollary stems from the fact
that all the combined B-networks of type H/H̃ are rearrangeable, a very impor-
tant property for communication purpose.

Finally we can prove the following.

Theorem 4. Let H1 and H2 be any two n-layered B-networks. If both H1 and
H2 are touching then H1/H1 is isomorphic to H2/H2.

The proof which is similar to the proof of Theorem 2 is left to the reader. It
can easily be verified that the Butterfly network is touching and it is known
that BY (n)/BỸ (n) is not isomorphic to BY (n)/BY (n). Thus follows directly
from Theorem 3. The question whether BY (n)/BY (n) is rearrangeable is an
open problem (see [EL97]). It may be easier to approach this problem using
an isomorphic network which is homogeneous. E.g. as the Ω network is also
touching we may try to analyze the network Ω(n)/Ω(n) which is isomorphic to
BY (n)/BY (n). As all the layers of Ω(n)/Ω(n) have the same form, a cn−1 b,
we can rephrase the problem in a more general form, i.e.:

258 Azaria Paz

1. Is it possible to construct a rearrangeable network by concatenating layers
of the form a cn−1 b?

2. If the answer to (1) is “yes” then find the minimal k such that the network
consisting of k layers of the form a cn−1 b is rearrangeable.

References

[EL97] Even, S., Litman, A.: Layered Cross Product—A Technique to Construct In-
terconnection Networks, Networks 29 (1997) 219–223.

[La75] Lawrie, D.H.: Access and Alignment of Data in an Array Processor”, IEEE
Trans. Computers C24 (1975) 1145–1155.

[L92] Leighton, F.T.: Introduction to Parallel Algorithms and Architectures: Arrays,
Trees and Hypercubes, Morgan Kaufman Publ., San Mateo, CA, (1992).

[Pa2002] Paz, A.: A Theory of Decomposition into Prime Factor of Layered Inter-
connection Networks—a New Version, technical report #892, Computer Science
Dept., Technion—IIT, April 2002.

[WF80] Wu, C., Feng, T.: On a Class of Multistage Interconnection networks, IEEE
Trans. Computers C29 (1980) 694–702.

Structural Equivalence of Regularly Extended

E0L Grammars:
An Automata Theoretic Proof�

Kai Salomaa1 and Derick Wood2

1 School of Computing, Queen’s University, Kingston, Ontario K7L 3N6, Canada
ksalomaa@cs.queensu.ca

2 Department of Computer Science, Hong Kong University of Science & Technology,
Clear Water Bay, Kowloon, Hong Kong

dwood@cs.ust.hk

Abstract. Regularly extended E0L grammars allow an infinite number
of rules for a given nonterminal provided that the set of right sides of the
rules for each nonterminal is a regular language. We show that structural
equivalence remains decidable for regularly extended E0L grammars.

1 Introduction

The decidability of structural equivalence of context-free grammars is a classical
result [9, 13] and a simplified automata theoretic decidability proof is known
from [19]. The question remains decidable for E0L grammars [10–12, 17] which
are parallel context-free grammars. In the case where the parallel derivation is
controlled by a finite set of tables, that is, we have ET0L grammars, structural
equivalence is already undecidable [16]. On the other hand, if the tables are
restricted to be homomorphisms [18], or if we consider the strong equivalence
that compares also the sequences of tables used [8], this question again becomes
decidable.

All of the above results are obtained for context-free type grammars with a
finite set of rules, and the corresponding syntax trees have nodes of bounded
arity. Due to many applications in document grammars, recently there has been
much interest in regularly extended context-free type grammars [1–3, 5], as well
as, in tree automata operating on unranked trees [3, 4].

It has been shown that structural equivalence remains decidable also for regu-
larly extended (sequential) context-free grammars [5]. In this paper we establish
the decidability of structural equivalence for regularly extended E0L grammars.
Our proof uses tree automata, following the approach from [19, 17]. Naturally
the syntax trees of (regularly extended) E0L grammars cannot be recognized by

� The research of the first author was supported under the Natural Sciences and
Engineering Research Council of Canada grant OGP0147224 and that of the second
was supported under the grant HKUST6166/00E from the Research Grants Council
of the Hong Kong SAR.

J. Karhumäki et al. (Eds.): Theory Is Forever (Salomaa Festschrift), LNCS 3113, pp. 259–267, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

260 Kai Salomaa and Derick Wood

finite tree automata and the automata used in [17] relied on an explicit height
counting mechanism. To simplify the constructions, here instead of an explicit
height counting capability we restrict the form of the input trees and show that
equivalence of the tree automata on the restricted set of input trees can be
decided effectively.

The decidability proof for regularly extended context-free grammars in [5]
uses a grammatical approach where the given grammars are transformed into a
normal form and arbitrary grammars are shown to be structurally equivalent if
and only if the normal forms are identical. Similarly a grammatical approach is
used in [10–12] for deciding the structural equivalence of E0L grammars with
finitely many rules. Already for sequential and parallel grammars with finitely
many rules, the proof establishing the uniqueness of the normal form grammar
is more involved than the decidability proof based on tree automata, but it has
the advantage of explicitly giving a grammatical normal form. We do not know
whether a normal form grammar can be constructed for regularly extended E0L
grammars such that it is unique for structurally equivalent grammars.

2 Regularly Extended E0L Grammars and Tree
Automata

We briefly recall some definitions concerning regularly extended E0L grammars
and tree automata. For all unexplained notions on formal languages we refer the
reader to [20]. A general reference for L systems is [14] and for information on
tree automata we refer the reader to [6, 7].

The cardinality of a finite set A is #A and the power set of A is ℘(A). When
there is no danger of confusion, a singleton set {b} is denoted simply as b. All
alphabets we consider are finite. The set of words (respectively, nonempty words)
over an alphabet A is A∗ (respectively, A+) and λ denotes the empty word.

A regularly extended E0L grammar, or reE0L grammar, is a tuple

G = (V,Σ, S, P), (1)

where V is an alphabet of nonterminals, Σ is an alphabet of terminals (V ∩Σ =
∅), S ∈ V is the start nonterminal and P ⊆ V × (V ∪Σ)∗ is a set of productions
such that for any B ∈ V the language

{w ∈ (V ∪Σ)∗ | (B,w) ∈ P}

is regular.
Note that we allow that the set of productions can be infinite. As usual we

denote productions (B,w) ∈ P as B → w.
The productions of P define in the well-known way the parallel one-step

rewrite relation ⇒⊆ (V ∪ Σ)∗ × (V ∪ Σ)∗ defined by setting w1 ⇒ w2 if and
only if

w1 = B1 · · ·Bn, w2 = u1 · · ·un, Bi → ui ∈ P, i = 1, . . . , n.

Structural Equivalence of Regularly Extended E0L Grammars 261

The language generated by the grammar G is

L(G) = {w ∈ Σ∗ | S ⇒∗ w}.
Note that our definition does not allow the rewriting of terminals, that is,

the reE0L grammar is synchronized [14]. Thus the one-step rewrite relation is
in fact a subset of V ∗× (V ∪Σ)∗. It is well-known that this restriction does not
cause any restriction in terms of the family of languages generated.

We assume that notions such as the root, a leaf and the height of a tree are
known. The height of a tree with a single node is defined to be zero. If C is a
(finite) set, by a C-tree we mean a rooted ordered tree the nodes of which are
labeled by elements of C. Note that the same symbol of C may be used to label
nodes having different numbers of children, that is, we consider trees where the
node labels have variable arity. The set of all C-trees is denoted FC .

Next we define the syntax-trees of an reE0L grammar. In the following G is
always as in (1).

Denote Ξ = V ∪Σ ∪ {λ̂}. Here λ̂ is a new symbol that will be used to label
nodes corresponding to the empty word. A leaf of t ∈ FΞ is said to be a non-λ
leaf if it is labeled by some element other than λ̂.

The set of syntax trees of G, S(G), is a subset of FΞ defined inductively as
follows. A tree with one node labeled by a symbol of Ξ is in S(G). Assume that
t ∈ S(G) and the non-λ leaves of t are u1, . . . , um, m ≥ 1, where ui is labeled by
Bi ∈ V , and Bi → ai

1 · · · ai
ki
∈ P , ki ≥ 0, ai

j ∈ V ∪Σ, j = 1, . . . , ki, i = 1, . . .m.
Then the tree t′ is in S(G) if t′ is obtained from t by attaching, for each node ui,
ki children that are labeled, respectively, by the symbols ai

1, . . .ai
ki

. If ki = 0,
the node ui has one child labeled by λ̂.

According to the above definition the root of a syntax tree can be labeled
by any symbol of Ξ. This is useful in inductive constructions where we consider
derivations beginning with any grammar symbol. Below the terminal syntax
trees are required to represent derivations that begin with the start nonterminal
and produce a terminal word.

A syntax tree t ∈ S(G) is said to be terminal if the root of t is labeled by the
start nonterminal S and all leaves of t are labeled by elements of Σ ∪ {λ̂}. The
set of terminal syntax trees of G is denoted TS(G). The terminal syntax trees
correspond in the obvious way to parallel derivations of the grammar G yielding
terminal words.

For t ∈ FΞ we denote by yield(t) the word over V ∪Σ obtained by concate-
nating from left to right the labels of all non-λ leaves of t. Then

L(G) = {yield(t) | t ∈ TS(G)}.
The structure of a syntax tree t ∈ S(G), str(t) is the tree obtained from t

by replacing the label of each internal node of t by ". Here " is a new symbol
not appearing in V ∪ Σ. Essentially, the structure trees can be considered to
have labels only for the leaves. The special symbol " is used only to make it
possible to define transitions of a tree automaton without a separate assumption
concerning unlabeled nodes.

262 Kai Salomaa and Derick Wood

The set of terminal structure trees of G is

STS(G) = {str(t) | t ∈ STS(G)}.

The following definition generalizes the notion of E0L structural equivalence
[10–12, 17] for regularly extended grammars.

Definition 1. Let G1 and G2 be regularly extended E0L grammars. The gram-
mars G1 and G2 are structurarly equivalent if

STS(G1) = STS(G2).

To conclude this section we recall some basic definitions concerning tree au-
tomata that will be needed for the proof of our main result. Differing from the
usual model of tree automata operating on trees over ranked alphabets, we con-
sider trees over unranked alphabets, see e.g. [4].

Let Ω be a finite alphabet that is used to label the trees. A regularly extended
bottom-up tree automaton is a tuple

M = (Ω,Q,QF , δ), (2)

where Q is a finite set of states, QF ⊆ Q is a set of accepting states and δ
associates to each τ ∈ Ω a relation τδ ⊆ Q∗ × Q such that for every q ∈ Q,
τ ∈ Ω the set

L(q, τ) = {w ∈ Q∗ | (w, q) ∈ τδ} (3)

is regular. In the following, unless otherwise mentioned, by a tree automaton we
always mean a regularly extended bottom-up tree automaton.

By an M -configuration we mean an (Ω ∪ Q)-tree where elements of Q oc-
cur only as labels of leaves and the set of M -configurations is conf(M). The
computation relation of M , -M⊆ conf(M)× conf(M), is defined as follows. Let
t, t′ ∈ conf(M). Then t -M t′ if t′ is obtained from t by replacing a subtree
τ(q1, . . . , qm), τ ∈ Ω, q1, . . . , qm ∈ Q by a single node labeled by p ∈ Q such that

(q1 · · · qm, p) ∈ τδ.

Note that if above τ labels a leaf of t (that is, m = 0), then τ is replaced by a
state p such that (λ, p) ∈ τδ.

The forest, or tree language, (⊆ FΩ) recognized by M is

L(M) = {t ∈ FΩ | (∃q ∈ QF) t -∗M q̄}.

Above q̄ denotes the tree with a single node labeled by q.
A tree automaton (2) is deterministic if for each τ ∈ Ω and w ∈ Q∗ there is

at most one p ∈ Q such that (w, p) ∈ τδ. It is well known that for an arbitrary
nondeterministic bottom-up tree automaton we can construct an equivalent de-
terministic automaton. A forest is regular if it accepted by a (deterministic or
nondeterministic) bottom-up tree automaton.

Structural Equivalence of Regularly Extended E0L Grammars 263

The following lemma is proved using the standard direct product construc-
tion. First we just need to add a “dead state” for the second automaton M2

which ensures that the computation of M2 always reaches the root. The set of
accepting states of the direct product automaton consists of all pairs where the
first component is an accepting state of M1 and the second component is not
an accepting state of M2. It is easy to verify that the state transition relation
obtained from the direct product construction satisfies condition (3), that is, the
constructed automaton is also a regularly extended tree automaton.

Lemma 1. Let Mi = (Ω,Qi, QF,i, δi), i = 1, 2, be deterministic tree automata.
Then we can effectively construct a deterministic tree automaton M such that

L(M) = L(M1)− L(M2).

3 The Main Result

Clearly the set of syntax trees (or structures of syntax trees) of an reE0L gram-
mar is not regular since a finite tree automaton cannot check that the tree
represents a parallel derivation. However, we can use tree automata to decide
structural equivalence by restricting consideration to balanced input trees or,
strictly speaking, to input trees where each path from the root to a non-λ node
is of equal length. Such trees correspond to parallel E0L derivations and then it
is sufficient for the tree automaton to check that the derivation is correct locally.
For the decidability result it is essential that the automaton can be constructed
to be deterministic.

The following notation is introduced to deal with “almost balanced” trees
corresponding to derivations of an reE0L grammar, where leaves labeled by λ̂
can occur at any depth. Let Ω be an alphabet and τ ∈ Ω. The set

BALΩ(τ) ⊆ FΩ (4)

is defined to consist of all Ω-trees t such that

(i) The symbol τ occurs only as a label of leaves in t.
(ii) If u1, u2 are any leaves of t not labeled by τ then the distance of u1 and u2

from the root of t is the same.

The above conditions mean that t is a balanced tree with the exception that
leaves labeled by the special symbol τ can occur at any level.

Let G be an reE0L grammar as in (1) and Ω = "∪Σ ∪ λ̂. Then we can note
that all structures of terminal syntax trees of G belong to BALΩ(λ̂).

The following lemma is an extension of the well known corresponding result
for (extended) context-free grammars with the additional requirement that we
consider only “almost parallel” input trees.

Lemma 2. Let G = (V,Σ, S, P) be an reE0L grammar and Ω = " ∪ Σ ∪ λ̂.
Then we can effectively construct a deterministic tree automaton M such that

L(M) ∩ BALΩ(λ̂) = STS(G). (5)

264 Kai Salomaa and Derick Wood

Proof. Choose

M = ((" ∪Σ ∪ λ̂), (℘(V) ∪ Σ̄ ∪ qλ),V, δ),

where Σ̄ = {σ̄ | σ ∈ Σ}, V = {U ⊆ V | S ∈ U} and δ is defined as follows.

(i) For σ ∈ Σ, we set σδ = {λ} × {σ̄}.
(ii) λ̂δ = {λ} × {qλ}.
(iii) Let U1, . . . , Um ∈ ℘(V), m ≥ 1. Then (U1 · · ·Um, U) ∈ "δ for

U = {B ∈ V | (∃Bi ∈ Ui, i = 1, . . . ,m) B → B1 · · ·Bm ∈ P}.
The set U is the only set X such that (U1 · · ·Um, X) ∈ "δ.

Since P is the production set of an reE0L grammar we know that for any set
U ⊆ V the set

{U1 · · ·Um | (∀B ∈ U)(∃Bi ∈ Ui, i = 1, . . . ,m) B → B1 · · ·Bm ∈ P} (⊆ ℘(V)∗)

is an intersection of finitely many regular languages, and hence regular. This
means that the rules defined in (iii) can be used in a regularly extended tree
automaton. Directly by their definition, all the rules (i), (ii) and (iii) are deter-
ministic.

Note that rules (i) mean that at a leaf labeled by σ the computation begins
in state σ̄. Similarly, rule (ii) says that at leaves labeled by λ̂ the computation
begins in state qλ (which is a new symbol that we use instead of the rather
cumbersome notation ¯̂

λ). Let t be any tree of height at least one. Using the
definition of the rules (iii) and induction on the height of a tree t ∈ BALΩ(λ̂)
we see that M reaches the root of t in a state U ∈ ℘(V) where

U = {B ∈ V |
(∃t′ ∈ S(G)) such that the root of t′ is labeled by B and str(t′) = t}.

Note that if t ∈ BALΩ(λ̂) has some internal nodes labeled by symbols other
than " then U = ∅ and the computation of M becomes blocked before reaching
the root.

By the choice of the set of accepting states V the above means that the
equation (5) holds. ��

It is well known that emptiness of regularly extended tree automata is de-
cidable. In the below two lemmas we show that also emptiness modulo the set
of “almost balanced” trees can be decided effectively.

We say that a tree t is k-bounded if any node of t has at most k children.

Lemma 3. Given a tree automaton M = (Ω,Q,QF , δ) we can effectively com-
pute a constant k such that the following condition holds.

Let τ ∈ Ω and suppose that t ∈ L(M) ∩ BALΩ(τ). Then there exists a k-
bounded tree t′ ∈ L(M)∩BALΩ(τ) such that the height of t′ is less than or equal
to the height of t.

Structural Equivalence of Regularly Extended E0L Grammars 265

Proof. For q ∈ Q and ω ∈ Ω let nq,ω denote the number of states of the minimal
deterministic finite automaton for the language L(q, ω) from (3). Choose

k = max
q∈Q,ω∈Ω

nq,ω. (6)

Consider an arbitrary t ∈ L(M) ∩ BALΩ(τ) and let u be a node of t having m
children, where m > k. Let C be an accepting computation of M on t and let
(q1 · · · qm, p) ∈ ωδ be the computation step used at the node u, where ω ∈ Ω is
the label of u and q1, . . . , qm, p ∈ Q. Since m > k, the equation (6) implies that
there exist 1 ≤ i < j ≤ m such that q1 · · · qiqj+1 · · · qm ∈ L(p, ω), that is,

(q1 · · · qiqj+1 · · · qm, p) ∈ ωδ. (7)

Let t′ be the tree that is obtained from t by deleting the (i + 1)st, . . . , jth
immediate subtrees of the node u. By (7) and the fact that C is an accepting
computation, M has an accepting computation on t′. Also we note that if r is
any tree in BALΩ(τ) and we delete a number of immediate subtrees of a node
v of r, the resulting tree is still in BALΩ(τ) assuming that we do not delete all
the immediate subtrees of v. Thus t′ ∈ BALΩ(τ).

By repeating the above process as long as there are nodes having more than
k children, we obtain a k-bounded tree that is in the forest L(M) ∩ BALΩ(τ)
and each step in the process either preserves the height of the tree or decreases
it. The latter can happen if all the remaining subtrees of the given node have all
leaves labeled by the special symbol τ .

Also it is clear that given the transition relation of the tree automaton M
we can effectively compute the constant k. ��

For the below result recall that the notation BALΩ(τ) is as defined in (4).

Lemma 4. Given a tree automaton M = (Ω,Q,QF , δ) and τ ∈ Ω we can
effectively decide whether or not

L(M) ∩ BALΩ(τ) = ∅.
Proof. Let t ∈ BALΩ(τ). The ith level of t is defined to consist of nodes that
are at distance i from the root. Thus

all subtrees rooted at level i nodes and having
a non-τ leaf have the same height. (8)

By a non-τ leaf we mean a leaf node labeled by a symbol in Ω − τ .
Assume that M accepts t and let C be the accepting computation of M on t.

Let Ai denote the set of states that the computation C reaches at nodes on the
ith level, where 0 ≤ i ≤ height(t). Now if height(t) > 2#Q we can guarantee that
there exist 0 ≤ i < j ≤ height(t) such that Ai ⊆ Aj . Let t′ be the tree obtained
from t by replacing each subtree r rooted at the ith level with a subtree s rooted
at the jth level such that computation C reaches the root of r and the root of s
in the same state. Thus M accepts t′. Also, by (8), t′ ∈ BALΩ(τ).

266 Kai Salomaa and Derick Wood

By repeating the above process we see that if L(M)∩BALΩ(τ) is not empty
then it contains a tree of height at most 2#Q. Now the result of Lemma 3
implies that L(M)∩BALΩ(τ) contains a k-bounded tree of height at most 2#Q

where k can be effectively computed when the tree automaton M is given. This
means that in order to decide emptiness of L(M) ∩ BALΩ(τ), it is sufficient to
check whether L(M) accepts a constant number of candidate trees belonging to
BALΩ(τ) where the candidate trees can be effectively found. ��

Now we are ready to prove the main result.

Theorem 1. Structural equivalence of regularly extended E0L grammars is de-
cidable.

Proof. Assume we are given reE0L grammars G1 and G2 with terminal alphabet
Σ. Without loss of generality we can assume that both grammars use the same
terminal alphabet, otherwise we consider the union of the terminal alphabets.
Let Ω = " ∪ Σ ∪ λ̂. By Lemma 2, we can construct deterministic regularly
extended tree automata Mi such that

L(Mi) ∩ BALΩ(λ̂) = STS(Gi), i = 1, 2.

By Lemma 1 we can construct (deterministic) tree automata N1,2 and N2,1 such
that

L(Ni,j)∩BALΩ(λ̂) = (L(Mi)∩BALΩ(λ̂))−(L(Mj)∩BALΩ(λ̂)), {i, j} = {1, 2}.

Now G1 and G2 are structurally equivalent if and only if L(Ni,j)∩BALΩ(λ̂) = ∅,
when (i, j) = (1, 2) and (i, j) = (2, 1). By Lemma 4 these conditions can be tested
algorithmically. ��

Lemma 2 can be immediately modified to show that we can construct a
deterministic tree automaton M such that L(M) ∩ BALΩ(λ̂) = TS(G), where
G = (V,Σ, S, P) and Ω = V ∪Σ ∪ λ̂. Recognizing the syntax trees of G is in fact
easier than recognizing the structures of syntax trees of G (in both cases modulo
the set of “almost balanced” trees) since in the case of syntax trees the rules (iii)
in the construction of the proof of Lemma 2 do not need to consider all possible
nonterminals appearing as left side of the rule, in syntax trees the nonterminal
is given as the label of the node. This means that the proof of Theorem 1 gives
immediately the following:

Corollary 1. For given reE0L grammars G1 and G2 we can effectively decide
whether or not TS(G1) = TS(G2), i.e., whether or not the grammars are syntax
equivalent.

To conclude we can note that the algorithm obtained from the proof of Theo-
rem 1 is extremely inefficient and the complexity of the structural equivalence of
reE0L grammars remains open. From [15] we get a lower bound for the complex-
ity since the structural equivalence of E0L grammars with finitely many rules is
already hard for deterministic exponential time.

Structural Equivalence of Regularly Extended E0L Grammars 267

References

1. Albert, J., Giammarresi, D., Wood, D.: Normal form algorithms for extended
context-free grammars. Theoret. Comput. Sci. 267 (2001) 35–47.

2. Berstel, J., Boasson, L.: Formal properties of XML grammars and languages. Acta
Informatica 38 (2002) 649–671.

3. Brüggemann-Klein, A., Wood, D.: Caterpillars: A context-specification technique.
Mark-up Languages: Theory & Practice 2 (2000) 81–106.

4. Brüggemann-Klein, A., Wood, D.: The regularity of two-way nondeterministic tree
automata languages. Internat. J. of Foundations of Computer Science 13 (2002)
67–81.

5. Cameron, H.A., Wood, D.: Structural equivalence of regularly extended context-
free grammars and SGML DTDs. Manuscript, 1996.

6. Gécseg, F., Steinby, M.: Tree Automata. Académiai Kiadó, Budapest, 1984.
7. Gécseg, F., Steinby, M.: Tree languages. In: Rozenberg, G., Salomaa, A. (eds.):

Handbook of Formal Languages, Vol. III, Springer-Verlag (1997) 1–68.
8. Istrate, G.: The strong equivalence of ET0L grammars. Inf. Process. Lett. 62 (1997)

171–176.
9. McNaughton, R.: Parenthesis grammars. J. Assoc. Comput. Mach. 14 (1967) 490–

500.
10. Niemi, V.: A normal form for structurally equivalent E0L grammars. In: Rozenberg,

G., Salomaa, A. (eds): Lindenmayer Systems: Impacts on Theoretical Computer
Science, Computer Graphics, and Developmental Biology. Springer-Verlag (1992)
133–148.

11. Ottmann, Th., Wood, D.: Defining families of trees with E0L grammars. Discrete
Applied Math. 32 (1991) 195–209.

12. Ottmann, Th., Wood, D.: Simplifications of E0L grammars. In: Rozenberg, G., Sa-
lomaa, A. (eds): Lindenmayer Systems: Impacts on Theoretical Computer Science,
Computer Graphics, and Developmental Biology. Springer-Verlag (1992) 149–166.

13. Paull, M., Unger, S.: Structural equivalence of context-free grammars. J. Comput.
System Sci. 2 (1968) 427–463.

14. Rozenberg, G., Salomaa, A.: The Mathematical Theory of L Systems. Academic
Press, New York, 1980.

15. Salomaa, K., Wood, D., Yu, S.: Complexity of E0L structural equivalence. RAIRO
Theoretical Informatics 29 (1995) 471–485.

16. Salomaa, K., Wood, D., Yu, S.: Structural equivalence and ET0L grammars. The-
oret. Comput. Sci. 164 (1996) 123–140.

17. Salomaa, K., Yu, S.: Decidability of structural equivalence of E0L grammars. The-
oret. Comput. Sci. 82 (1991) 131–139.

18. Salomaa, K., Yu, S.: Decidability of EDT0L structural equivalence. Theoret. Com-
put. Sci. 276 (2002) 245–259.

19. Thatcher, J.W.: Tree automata: an informal survey. In: Aho, A.V. (ed.): Currents
in the Theory of Computing. Prentice Hall, Englewood Cliffs, NJ (1973) 143–172.

20. Wood, D.: Theory of Computation. John Wiley & Sons, New York, NY, 1987.

Complexity of Evolving Interactive Systems�

Peter Verbaan1, Jan van Leeuwen1, and Jǐŕı Wiedermann2

1 Institute of Information and Computing Sciences, Utrecht University,
Utrecht, the Netherlands

2 Institute of Computer Science, Academy of Sciences of the Czech Republic,
Prague, Czech Republic

Abstract. We study a versatile model of evolving interactive comput-
ing: lineages of automata. A lineage consists of a sequence of interactive
finite automata, with a mechanism of passing information from each au-
tomaton to its immediate successor. Lineages enable a definition of a
suitable complexity measure for evolving systems. We show several com-
plexity results, including a hierarchy result.

1 Introduction

It is commonly recognised that the Turing machine model, which has long been
the basis for theoretical computer science, fails to capture all the characteristics
of modern day computing (cf. [5, 11, 13]). When we think of a modern networked
computing system, we see a device that can interact with its environment and
that can be changed over time (by installing new hardware or upgrading the
software). The system is ‘always on’ and a computation on such a device can
extend arbitrarily, which implies the existence of potentially infinite computa-
tions. Networked machines and the programs that run on them are examples of
evolving interactive systems ([4, 6]). Further examples are given in [14, 15].

If we look at a (deterministic) computation (or a transduction) from a tra-
ditional point of view, the entire input and the underlying system are fixed the
moment we start the computation. In a more realistic setting, we want a user
to generate the input interactively and allow the user to alter the system’s be-
haviour during the computation. Last but not least, computations can be poten-
tially never-ending. Systems that allow these kinds of computations are called
evolving interactive systems. In this paper, we define lineages of automata, a
simple yet elegant model which captures the evolving aspect of computational
systems in a natural way. It turns out that even this simple model is more power-
ful than classical Turing machines. This was observed in [4, 6], where lineages of
automata were shown to be equivalent to so-called interactive Turing machines
with advice. The latter machines are known to possess super-Turing computing
power.

A lineage is a sequence of interactive, finite automata with a mechanism of
passing information from each automaton to its immediate successor and the
� The research of the third author was partially supported by GA ČR grant No.

201/02/1456.

J. Karhumäki et al. (Eds.): Theory Is Forever (Salomaa Festschrift), LNCS 3113, pp. 268–281, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Complexity of Evolving Interactive Systems 269

potential to process infinite input streams. Every automaton in the sequence
can be seen as a temporary instantiation of the system, before it changes into a
different automaton. We study the properties of lineages through the translations
they realize. Lineages of interactive finite automata (or: transducers) have been
introduced in [6].

The concept of transducers acting on infinite input streams (ω-transducers)
is not new. For example, [9] gives an overview of the theory of finite devices
that operate on infinite objects. In the field of non-uniform complexity theory,
sequences of computing devices are common-place ([1]). It is the idea of com-
bining these concepts and allowing some form of communication between the
devices in the sequence that is new and that allows for a closer modelling of sys-
tem evolution. The approach leads to several new fundamental questions that
are settled in this paper.

We can measure the “speed of growth” (i.e. “growth complexity”) of a lin-
eage by a function that relates the index of each automaton to its size. That
is, the complexity of a lineage is a function g such that the n-th automaton in
the sequence has g(n) states. Using this measure, we can divide the translations
computed by evolving systems into classes based on the complexity of the lin-
eages that realize them. Our main result states that this division is non-trivial
and leads to strict hierarchies, i.e. for every positive, non-decreasing function g,
there is a translation that can be realized by a lineage of complexity g, but not
by any lineage of lower complexity.

The structure of the paper is as follows. In section 2, we define lineages.
Next, in section 3, we define a novel measure of complexity on translations

and establish the hierarchy result.

1.1 Notation

In most literature, the term transducer is used to denote an automaton with
output capability. Every time we use the word automaton, the term transducer
could be substituted for it without ill effects.

We use Σ and Ω to denote alphabets. We use the notations Σ�, Σω for the
sets of finite and infinite strings over Σ respectively and Σ∞ for the union of
Σ� and Σω. We call a partial function from Σ∞ to Ω∞ a translation.

For a string x ∈ Σ∞ of length at least n, we denote the n-th symbol of x by
xn, or (x)n, to improve readability. We write x[i:j] for xixi+1 . . . xj . We also use
the projection functions for tuples, πn, which are defined straightforwardly, i.e.,
πn ‘returns’ the n-th component of a tuple that serves as the argument of πn,
for any n.

Let D be a subset of Σ∞. We define the n-th prefix domain Pn(D) as the
set of all prefixes of length n of strings in D,

Pn(D) = { x[1:n] | x ∈ D } . (1)

We define a topology on Σ∞ as follows. Let u be a finite string over Σ. Then
the set of all possible extensions of u,

B(u) := { x ∈ Σ∞ | u is a prefix of x } (2)

270 Peter Verbaan, Jan van Leeuwen, and Jǐŕı Wiedermann

is a basis set. Let S be a subset of Σ∞. We call S an open set if it is a union of
basis sets. A set is closed if it is the complement of an open set.

2 Modelling Evolving Interactive Systems by Lineages

As we explained in the introduction, the models of classical computability theory
are not sufficient to capture all aspects of modern computing systems. This calls
for theories that better describe these systems. Various extensions of classical
models of computation have been studied that capture non-classical features of
modern systems in some way (cf. [4, 12]). In this paper, we develop a new model
for computing systems, initially outlined in [6]: lineages, inspired by a similar
notion in evolutionary biology.

The building blocks of the model are a generalisation of Mealy automata.
These automata process potentially infinite input streams and produce poten-
tially infinite output streams, one symbol at a time. We do not assume that the
input is provided on an input tape. Instead, the automaton reads its input from
a single input port. One symbol is read from this port at each step. Similarly,
the output goes to a single output port, one symbol at a time. In contrast to
classical models, the input stream does not have to be known in advance, and
can be adjusted at any time by an external agent, based on previous in- and
output symbols. This allows the environment to interact with the automaton.

We model the evolutionary aspects by considering sequences of automata.
Each automaton in the sequence represents the next evolutionary phase of the
system. The way in which this sequence develops need not be described recur-
sively in general. When a transition occurs from one automaton to its successor,
the information that the automaton has accumulated over time must be pre-
served in some way. This is done by requiring that every automaton has a subset
of its states in common with its immediate successor.

Definition 1. An automaton is a 6-tuple A = (Σ,Ω,Q, I,O, δ), where Σ and
Ω are non-empty finite alphabets, Q is a set of states, I and O are subsets of
Q, and δ : Q × Σ → Q × Ω is a (partial) transition function. Σ is the input
alphabet, and Ω is the output alphabet. We call I the set of entry states and O
the set of exit states.

Definition 2. Let A be a sequence of automata A1, A2, . . . , with the automata
Ai = (Σ,Ω,Qi, Ii, Oi, δi) such that Oi ⊆ Ii+1 for every i. We call A a lineage
of automata, or a lineage for short.

We do not require a recursive recipe for constructing the sequences of automata.
The elements in Qi−Oi are called local states (of Ai). The first automaton, A1,
has an initial state qin ∈ I1. Usually, I1 contains only the initial state of A1, and
Ii+1 equals Oi. See Fig. 1 for an example.

A lineage A operates on elements of Σ∞. On an input string x, at any time,
only one automaton processes x. The automaton that processes x at a particular
time is called active (at that time). Initially, A1 is the active automaton, and it

Complexity of Evolving Interactive Systems 271

�

�

�
�

�

�

�

�

�

� �

A1

qin

q2

q3I1

O1

A2

q2

q3

q4

I2

O2

Fig. 1. Part of a lineage A. The set of exit states of A1 is a subset of the set of entry
states of A2

starts processing x. Whenever an active automaton Ai enters an exit state q, it
turns the control over to Ai+1, which then becomes the active automaton. This
is done by letting Ai+1 start processing the remainder of x, beginning in state q
(which is an entry state of Ai+1 by definition). This is called updating, and Ai

is the i-th update of A.
Formally, let Q be the union of all Qi and let x ∈ Σ∞ be an input to a

lineage A. Using simultaneous recursion, we define a sequence of states (qj)j≥1

in Q and a sequence of integers (mj)j≥1, with mj representing the index of the
active automaton at time j, as follows:

q1 = qin ,
m1 = 1 ,

qj+1 = π1

(
δmj (qj , xj)

)
,

mj+1 =

⎧⎨⎩mj + 1 if qj+1 ∈ Omj

mj if qj+1 ∈ Qmj −Omj

undefined if qj+1 is undefined
.

(3)

Note that qj+1 and mj+1 depend on x[1:j]. Therefore, we also write qj+1(x[1:j])
and mj+1(x[1:j]) to emphasize the dependence. If qj is defined for every j ≤
|x| + 1, then we say that x is a valid input to A. In this case, the output of A

on x is the string y ∈ Ω∞ such that yj = π2

(
δmj (qj , xj)

)
, for every j ≥ 1.

Definition 3. Let A be a lineage. For every n ≥ 1, we define the partial function
φA,n : Σn → Ωn by letting φA,n(x) be the output of A on x if x is a valid input
and undefined otherwise, for every x of length n. We say that φA,n is realized
by the lineage A. In general, for a partial function ψ : Σn → Ωn, we say that ψ
is realizable, if there is a lineage A such that ψ equals φA,n.

272 Peter Verbaan, Jan van Leeuwen, and Jǐŕı Wiedermann

Since there are only finitely many strings of length n, for any lineage A and
integer n, the translation φA,n can be realized by a single finite-state automaton,
which justifies the definition. There is no need to restrict our attention to finite
strings.

Definition 4. Let A be a lineage. We define the partial function ΦA : Σ∞ →
Ω∞ by letting ΦA(x) be the output of A on x if x is a valid input and undefined
otherwise, for every infinite string x. We say that ΦA is non-uniformly realized
by the lineage A. In general, for a partial function Ψ : Σ∞ → Ω∞, we say that
Ψ is non-uniformly realizable, if there is a lineage A such that Ψ equals ΦA.

For many lineages A, the translation ΦA is not realizable by a single finite-
state automaton and not even by a Turing transducer, see [10] for details. For
the remainder of this paper, we consider translations on infinite strings, unless
stated otherwise. See also [6].

Let Φ be a translation and n an integer. We say that (Φ)n
3 depends only on the

first n input symbols, if there is a function f : Σn → Ω, such that (Φ(x))n equals
f(x[1:n]) for every x in the domain of Φ. A non-uniformly realizable translation
has this property for every n, since

(Φ(x))n = π2 (δmn(qn, xn)) = π2

(
δmn(x[1:n−1])

(
qn

(
x[1:n−1]

)
, xn

))
. (4)

Let A = A1, A2, A3, . . . be a lineage of automata and let n and m be integers.
In a slight abuse of notation, we say that Am is able to process all strings of
length n, if mn(x[1:n]) ≤ m for every string x. In other words, if for any string
x, the lineage A needs less than m updates to process the first n symbols of x.

2.1 Alternative Characterisations of Lineages

In [10], we show that lineages of automata are equivalent to interactive Turing
Machines with advice. Among other things, this shows that the theory of lineages
has deep connections with non-uniformity theories.

The following two Propositions provide a useful characterisation of non-
uniformly realizable translations.

Proposition 1. Let Φ be a non-uniformly realizable translation. Then the do-
main of Φ is closed and (Φ)n depends only on the first n input symbols, for
every n.

Proof. Let D be the domain of Φ and let A be a lineage that non-uniformly
realizes Φ. Let x �∈ D be an infinite string and consider a run of A on x. Because
x is not in the domain of Φ, it must be the case that at some point, after
processing a prefix of length n − 1 of x, the automaton that is active at that
time, say Ak, is in a certain state q, such that there is no transition from q with
xn as input. If this moment would not occur, then A would never halt during
the run, and x would be in the domain.
3 Where (Φ)n is shorthand for the function x �→ (Φ(x))n.

Complexity of Evolving Interactive Systems 273

Let y be a string in B(x[1:n]) and consider a run of A on y. Since the first n
symbols of x and y are the same, the computation will halt at the same point
during the computation, so y cannot be in the domain of Φ. Hence B(x[1:n]) does
not intersect D, which implies that D is closed.

It follows from (4), that (Φ(x))n depends only on the first n input symbols.
��

Proposition 2. Let Φ be a translation. Suppose the domain D of Φ is closed
and (Φ)n depends only on the first n input symbols, for every n. Then Φ is
non-uniformly realizable by a lineage of size |Pn(D)|.
Proof. Let D be the domain of Φ. Let fn be the function with domain Pn(D),
such that (Φ(x))n = fn(x[1:n]) for every x ∈ D. By the assumptions of the
Proposition, fn is well-defined.

We construct a lineage A that non-uniformly realizes Φ. Every state of A will
correspond to a prefix u of a string in D. We label the corresponding state by
[[u]]. Define the set of states of An for n ≥ 1 by

In = { [[u]] | u ∈ Pn−1(D) } ,

On = { [[u]] | u ∈ Pn(D) } .
(5)

The trick is to choose the states such that In is a subset of On for every n. The
initial state of A1 is [[ε]]. The transition function δn is defined by

δn([[u]], a) =
{

([[ua]], fn(ua)) if ua ∈ Pn(D)
undefined otherwise . (6)

By the definition of fn, we infer that the lineage A produces Φ(x) on input
x ∈ D.

Suppose on the other hand that x �∈ D. Since D is closed, there is a basis set
B(u) that contains x, which does not intersect D. It follows that u �∈ P |u|(D).
Since the transition functions are not defined on u, we see that x is not a valid
input to A. Hence A non-uniformly realizes Φ. Note that A is of size |Pn(D)|.

��

3 The Complexity of Lineages

In this section, we develop the notion of complexity of lineages and establish
several results which allow us to compare many translations, based on the com-
plexity of the lineages that non-uniformly realize them.

The processing power of an automaton is directly related to the number of
states. An automaton with more states is able to distinguish among a greater
number of different situations. It can apply different actions to each situation it
can recognise, thus adding more diversity to a computation.

For a lineage, which is a sequence of automata, the number of states of each
of the constituent automata contributes to the computing power of the lineage.
Therefore, we use a function to describe the complexity of a lineage.

274 Peter Verbaan, Jan van Leeuwen, and Jǐŕı Wiedermann

Definition 5. The complexity of a lineage A is a function g such that for every
n, the number of states of An equals g(n). We say that a translation Φ is of
complexity g if there is a lineage A of complexity g that non-uniformly realizes Φ.
We define the complexity class SIZE(g) as the class of non-uniformly realizable
translations of complexity g or less.

First, we give an upper bound on the complexity of any non-uniformly real-
izable translation.

Proposition 3. Let Φ be a non-uniformly realizable translation over an alphabet
of size c. Then Φ can be non-uniformly realized by a lineage of size at most cn.

Proof. By Proposition 1 and Proposition 2, we can obtain a lineage A of size
|Pn(D)| that non-uniformly realizes Φ. There are at most cn strings of length n,
so |Pn(D)| ≤ cn.

��

3.1 Complexity Classes and the Functions That Represent Them

We have expressed the complexity of an evolving interactive system by a pos-
itive integer-valued function. Conversely, we ask which positive integer-valued
functions represent a complexity class. Some functions do not naturally corre-
spond to a complexity class, e.g. the super-exponential functions (Proposition
3). If a function is non-decreasing and has a “growth rate”4 that is bounded by
a constant, then it corresponds to a complexity class. If it is not, then we take a
suitable function that is nowhere greater than the original function and consider
its corresponding class. This is made precise below.

Let g : IN → IN be an arbitrary positive non-decreasing function and c a
positive integer. Define the function gc(n) by

gc(1) = min{ g(1) , c }
gc(n+ 1) = min{ g(n+ 1) , c · gc(n) } (7)

It follows that for every n,

– gc(n) ≤ g(n),
– gc(n) ≤ cn,
– gc(n) ≤ gc(n+ 1), and
– gc(n+ 1) ≤ c · gc(n).

In other words, gc is a positive, non-decreasing function that is bounded by g
and cn, with a “growth rate” that is bounded by c.

To show that the class SIZE(gc) is not empty, we construct a translation
Φg,c that is in this class. We also show that Φg,c is not in SIZE(h), for any
function h such that h(n) < gc(n) for some n. The construction is based on the
following idea: suppose A is a lineage that non-uniformly realizes a translation
4 The growth rate of a function g is defined as g(n + 1)/g(n)

Complexity of Evolving Interactive Systems 275

Φ. Two input-prefixes u and v (not necessarily of the same size) are considered
inequivalent when there is an infinite string x and an integer i such that Φ(ux)
and Φ(vx) both exist and (Φ(ux))|u|+i �= (Φ(vx))|v|+i. This is impossible if A

enters the same state after processing either u or v. Thus, to make sure that an
automaton of a lineage has at least k states, we need to make sure that there
are at least k inequivalent inputs to choose from, once this automaton is active.

First, we establish the domain of Φg,c. Let Σ be an alphabet of size c. For
every n, we choose gc(n) strings of length n, such that they are prefixes of the
gc(n+ 1) strings of length n+ 1. The details are given in Construction 1.

Construction 1. Label the letters from Σ as a1 through ac, and let Cn be the
chosen subset of size gc(n) of Σn. We proceed recursively.

C1 = { ai | i ≤ gc(1) } . (8)

Assume Cn is chosen. Using integer division, we write gc(n+1) = l ·gc(n)+m,
for unique integers l and m, with 0 ≤ m < gc(n). It follows that 1 ≤ l ≤ c. Let
u1, . . . , um be m different strings in Cn. Now take

Cn+1 = { uai | u ∈ Cn ∧ i ≤ l } ∪ { ujal+1 | j ≤ m } . (9)

It is left to the reader to verify that Cn+1 contains gc(n + 1) strings of length
n+ 1. Note that Cn+1 is well-defined, as either l < c or l = c and m = 0.

We call a string in Cn a choice. Note that ua1 is a choice if u is a choice.
Consider an infinite sequence of choices, such that each choice is a prefix of its
successor. Such a sequence defines a unique infinite string, such that each of its
prefixes is a choice. Let Δ be the set of infinite strings x such that each prefix
of x is a choice. The translation Φg,c will be defined on the domain Δ.

Construction 2. Consider the family of functions fk,l,m : Σ∞ → Σ1+l, defined
by

fk,l,m(x) =
{
x1+l

k if 0 < k ≤ m

x1+l
1 otherwise

, (10)

for k, l,m ∈ IN. Let ψ : IN → IN × IN be a surjective function that attains each
value infinitely often. Then the translation Φ is defined by

Φ(x) = fψ(1),1(x)fψ(2),2(x)fψ(3),3(x) . . . (11)

Finally, we define the translation Φg,c by

Φg,c(x) =
{
Φ(x) if x ∈ Δ
undefined otherwise . (12)

The translation Φg,c can be non-uniformly realized by a lineage of automata.
To prove this, we need the following two Lemmas.

Lemma 1. Δ is a closed set.

276 Peter Verbaan, Jan van Leeuwen, and Jǐŕı Wiedermann

Proof. Suppose x �∈ Δ. Then there is a prefix u of x such that u is not a choice.
Let y be an infinite string in B(u). Since u is a prefix of y, it follows that y �∈ Δ.
We conclude that Δ is closed.

��
Lemma 2. For every n, the function πn ◦Φg,c depends only on the first n input
symbols.

Proof. Let x ∈ Δ be an infinite string. The output of Φ(x) consists of infinitely
many concatenations of strings of the form fψ(m),m(x). For every integer m ≥ 1,
the string fψ(m),m(x) starts at index

im =

(
m−1∑
t=1

|fψ(t),t(x)|
)

+ 1 ≥ m . (13)

This string consists of multiple copies of xk, for a certain k ≤ m. Note that k
does not depend on the particular choice of x. The n-th symbol of Φ(x) belongs
to fψ(m),m(x) for a certain m. Obviously n ≥ im, so k ≤ m ≤ im ≤ n. It follows
that πn(Φg,c(x)) = xk for a certain k ≤ n.

��
Combining Lemmas 1, 2 and Proposition. 2, we conclude that Φg,c can be

non-uniformly realized. Next, we will examine the complexity of Φg,c. Proposi-
tion. 4 shows that Φg,c is of complexity gc, while Prop. 5 tells us that any lineage
with a complexity less than gc cannot non-uniformly realize Φg,c.

Proposition 4. The translation Φg,c can be non-uniformly realized by a lineage
A that updates at every step, such that An has gc(n) states.

Proof. Let A be the lineage from the proof of Proposition. 2. We see that Pn(Δ)
equals Cn. It follows that A is of size gc.

��
For the proof of Proposition 5, we need the following Lemma.

Lemma 3. Let k, l and n ≥ 1 be integers such that k, l ≥ n. Let x and y be
infinite strings such that xn �= yn. Then there is an i such that

πk+i(Φ(x)) �= πl+i(Φ(y)) . (14)

Proof. Assume k ≥ l. Let t = k − l. Choose an integer m ≥ l such that
ψ(m) = (n, t). Then fψ(m),m(x) = fn,t,m(x) = x1+t

n , since n ≤ m. It follows
that Φ(x) contains a string x1+t

n , starting at an index im ≥ m, namely the string
fψ(m),m(x). Similarly, Φ(y) contains a string y1+t

n , starting at the same index,
see Fig. 2. But then

πim+t(Φ(x)) �= πim(Φ(y)) , (15)

since xn �= yn. Now im ≥ m ≥ l, so im = l + i for a certain i, and im + t =
l + i+ (k − l) = k + i. Therefore

πk+i(Φ(x)) �= πl+i(Φ(y)) . (16)

��

Complexity of Evolving Interactive Systems 277

t + 1︷ ︸︸ ︷
| xn | xn | · · · | xn |

| yn | yn | · · · | yn |
im+t

im

Fig. 2. Part of the outputs of Φ, on the inputs x and y. Starting in position im, the
outputs contain a sequence of xn’s and yn’s respectively, of size t+1 each. As a result,
πim+t(Φ(x)) = xn �= yn = πim (Φ(y))

Let u and v be two different choices of length n. Let u′ be a choice that
extends u and v′ a choice that extends v. Finally, let x = (a1)ω. It follows that
u′x and v′x are elements of Δ. Since u �= v, it follows that there is an n′ ≤ n,
such that πn′(u′x) �= πn′(v′x). By Lemma 3, there is an i such that

π|u′|+i(Φg,c(u′x)) �= π|v′|+i(Φg,c(v′x)) . (17)

See Fig. 3 for a visual explanation.

n

u′

v′

u

v

(a1)
i

(a1)
i

︸ ︷︷ ︸

︸ ︷︷ ︸

︷ ︸︸ ︷

︷ ︸︸ ︷

︷ ︸︸ ︷

︷ ︸︸ ︷different outputs

�

�

Fig. 3. Two finite choices u and v, such that u �= v, are extended to choices u′ and v′

respectively. These choices are extended with the infinite string x = (a1)
ω. Then there

is an integer i such that π|u′|+i(Φ
g,c(u′x)) �= π|v′|+i(Φ

g,c(v′x))

Proposition 5. Let A be a lineage that non-uniformly realizes Φg,c. Suppose
Am is able to process all strings of length n. Then Am has at least gc(n) states.

Proof. Suppose Am has less than gc(n) states. Then there are two different
choices u and v of length n, with choices u′ and v′ that extend u and v respec-
tively, such that Am enters the same state r after processing either u′ or v′, see
Fig. 4.

278 Peter Verbaan, Jan van Leeuwen, and Jǐŕı Wiedermann

Then there is an i that satisfies (17). Suppose A is in the m-th update5, in
state r. Now we give x = (a1)ω as further input to A. After i steps, A enters a
state r′ with a certain output b. These last i steps are independent of the steps
that A took to reach r. In other words,

π|u′|+i(Φg,c(u′x)) = π|v′|+i(Φg,c(v′x)) = b , (18)

which contradicts (17). It follows that Am must have at least gc(n) states.
��

	
� �

Am
u′

v′

(a1)
i

q1

r r′

Fig. 4. The paths of two valid input-prefixes u′ and v′. After processing u′ or v′, Am

enters the state r. Then the remainder of the input is processed, which equals (a1)
ω

in both cases. The rest of the path only depends on r and (a1)
ω, so after i steps, both

paths enter r′ and the same output symbol is generated

Corollary 1. Let A be a lineage that non-uniformly realizes Φg,c. Then An has
at least gc(n) states.

Proof. Since each active automaton must read at least one symbol before A can
update, by the time A is ready to update to the n+ 1-st automaton, at least n
symbols have been read.

��
For any non-decreasing function g and any integer c > 1, the complexity class

SIZE(gc) contains the translation Φg,c. Furthermore, SIZE(gc) is the smallest
complexity class that contains Φg,c.

5 Or the m + 1-st, if r is an exit state.

Complexity of Evolving Interactive Systems 279

3.2 A Hierarchy Result for Complexity Classes

For clarity, we repeat the results of the preceding section in one Proposition.

Proposition 6. Let c be a positive integer and g a positive, non-decreasing func-
tion such that g equals gc. Let h be a function such that h(m) < g(m) for a certain
m. Then SIZE(g)− SIZE(h) is non-empty.

Proof. Combine Proposition 4 and Corollary 1.
��

When we are free to choose c, we can show that for any positive non-
decreasing function g, translations exist that cannot be non-uniformly realized
by any lineage that has less than g(n) states in its n-th automaton, for any
n. Observe that this is a stronger claim than before; we no longer require the
“growth rate” to be bounded.

Theorem 1. Let g be a positive, non-decreasing function and let h be a function
such that h(m) < g(m) for a certain m. Then SIZE(g)− SIZE(h) is non-empty.

Proof. Let c ≥ g(1) be an integer such that g(n+1) ≤ c ·g(n) for every n smaller
than m. Then gc(n) = g(n) for all n ≤ m. It follows that h(m) < gc(m). The
translation Φg,c can be non-uniformly realized by a lineage of size gc (Proposition
4). Hence Φg,c ∈ SIZE(g).

Any lineage A that non-uniformly realizes Φg,c must have at least gc(n) states
in its n-th automaton (Corollary 1). Since h(m) < gc(m), it follows that A is
not of size h. Hence Φg,c �∈ SIZE(h).

��

Corollary 2. Let g and h be positive non-decreasing functions such that h(n) ≤
g(n) for all n. If the inequality is strict for a certain n, then SIZE(h) is a proper
subset of SIZE(g).

Proof. By definition, any translation of complexity h is in SIZE(g). By Theorem
1, not every translation of complexity g is in SIZE(h).

��

This means that every extra state of a lineage can be used to gain more potential
computing power.

Corollary 3. Let g and h be positive non-decreasing functions such that h(n) <
g(n) for a certain n and g(m) < h(m) for a certain m. Then the classes SIZE(g)
and SIZE(h) are incomparable: both contain translations that do not occur in the
other.

280 Peter Verbaan, Jan van Leeuwen, and Jǐŕı Wiedermann

4 Conclusion

In this paper, we have developed the theory of lineages as a new model of compu-
tation. A lineage is a sequence of finite automata, where each automaton in the
sequence is viewed as the next instantiation or incarnation of the evolving system
that it models. By using lineages, one can immediately single out the evolution-
ary aspects of the system. The development of a lineage is modelled by looking
at the automata in the sequence, and the relation between each automaton and
its immediate successor.

An important characteristic of an automaton is its size. For a lineage, we de-
fined a complexity measure based on the size of the automata in the sequence. We
proved in Theorem 1 that lineages of higher complexity are able to non-uniformly
realize more translations than lineages of lower complexity. Specifically, for each
non-decreasing function g, there is a translation that can be non-uniformly re-
alized by a lineage of complexity g, but not by any lineage that has fewer than
g(n) states available for its n-th automaton, for a certain n. On the other hand,
once a translation (over an input alphabet of size c) is fixed, we know that it
can be non-uniformly realized by a lineage of complexity at most cn.

We conclude that lineages of automata present an attractive model for evolv-
ing interactive systems, with a basic mechanism for the underlying mode of com-
putation. The attractiveness is due to the mathematical elegance of the model
which, in spite of its apparent simplicity, still captures the important aspects of
many other models. The close relationship of lineages to finite automata makes
the model even more interesting since techniques and proofs from automata
theory can be adapted to the theory of lineages.

References

1. J.L. Balcázar, J. Dı́az, and J. Gabarró. Structural Complexity I, 2nd Edition,
Springer-Verlag, Berlin, 1995.

2. L.H. Landweber. Decision Problems for ω-Automata, Math. Syst. Theory, Vol. 3 :
4, 1969, pp. 376-384.

3. J. van Leeuwen, J. Wiedermann. On Algorithms and Interaction, in: M. Nielsen,
B. Rovan (Eds.), Mathematical Foundations of Computer Science 2000, Lecture
Notes in Computer Science Vol. 1893, Springer-Verlag, Berlin, 2000, pp. 99-113.

4. J. van Leeuwen, J. Wiedermann. The Turing Machine Paradigm in Contemporary
Computing, in: B. Enquist, W. Schmidt (Eds.), Mathematics Unlimited - 2001 and
Beyond, Springer-Verlag, Berlin, 2001, pp. 1139-1156.

5. J. van Leeuwen, J, Wiedermann. A Computational Model of Interaction in Embed-
ded Systems, in: Technical Report UU-CS-2001-02, Institute of Information and
Computing Sciences, Utrecht University, 2001.

6. J. van Leeuwen, J. Wiedermann. Beyond the Turing Limit: Evolving Interactive
Systems, in: L. Pacholski, P. Ružička (Eds.), SOFSEM 2001: Theory and Practice
of Informatics, 28th Conference on Current Trends in Theory and Practice of
Informatics, Lecture Notes in Computer Science Vol. 2234, Springer-Verlag, Berlin,
2001, pp. 90-109.

Complexity of Evolving Interactive Systems 281

7. M. Li, P. Vitányi. An Introduction to Kolmogorov Complexity and Its Applications,
2nd Edition, Springer-Verlag, New York, 1997.

8. L. Staiger. ω-Languages, in: G. Rozenberg, A. Salomaa (Eds.), Handbook of Formal
Languages, Vol. 3, Beyond Words, Springer-Verlag, Berlin, 1997, pp. 339-387.

9. W. Thomas. Automata on Infinite Objects, in: J. van Leeuwen (Ed.), Handbook
of Theoretical Computer Science, Vol. B, Elsevier Science, Amsterdam, 1990, pp.
134-191.

10. P. Verbaan, J, van Leeuwen, J. Wiedermann. Lineages of Automata, Technical Re-
port UU-CS-2004-018, Institute of Information and Computing Sciences, Utrecht
University, 2004.

11. P. Wegner. Why Interaction is more Powerful than Algorithms, Comm. of the
ACM, Vol. 40:5, 1997, pp. 81-91.

12. P. Wegner, E. Eberbach. New Models of Computation, The Computer Journal,
Vol. 47:1, 2004, pp. 4-9.

13. P. Wegner, D. Goldin. Computations beyond Turing Machines, Comm. of the ACM,
Vol. 46, 2003, pp. 100-102.

14. J. Wiedermann, J. van Leeuwen. Emergence of a Super-Turing Computational
Potential in Artificial Living Systems, in: J. Kelemen, P. Sośık (Eds.), Advances in
Artificial Life, 6th European Conference (ECAL 2001), Lecture Notes in Artificial
Intelligence Vol. 2159, Springer-Verlag, Berlin, 2001, pp. 55-65.

15. J. Wiedermann, J. van Leeuwen. The Emergent Computational Potential of Evolv-
ing Artificial Living Systems, AI Communications, Vol. 15 No. 4, IOS Press, Am-
sterdam, 2002, pp. 205-215.

Author Index

Brzozowski, Janusz, 1

Calude, Cristian S., 15
Choffrut, Christian, 29
Csuhaj-Varjú, Erzsébet, 35, 49

Dassow, Jürgen, 49
Dömösi, Pál, 60

Ésik, Zoltán, 68

Halava, Vesa, 81
Harju, Tero, 89
Hirvensalo, Mika, 102

Ilie, Lucian, 112
Ito, Masami, 125

Kari, Jarkko, 134
Kari, Lila, 145
Koivisto, Mikko, 159
Konstantinidis, Stavros, 145
Krukow, Karl, 192
Kuich, Werner, 68

Lahtonen, Jyrki, 102
Leeuwen, Jan van, 268

Marcus, Solomon, 15
Mart́ın-Vide, Carlos, 60
Mateescu, Alexandru, 170
Meskanen, Tommi, 181

Mitrana, Victor, 60
Moore, Cristopher, 134

Navarro, Gonzalo, 112
Negulescu, Radu, 1
Nielsen, Mogens, 192
Niemi, Valtteri, 205
Nivat, Maurice, 216

Păun, Gheorghe, 235
Paz, Azaria, 250
Pérez-Jiménez, Mario J., 235
Petre, Ion, 89

Rastas, Pasi, 159
Renvall, Ari, 181
Riscos-Núñez, Agust́ın, 235
Rozenberg, Grzegorz, 89

Salomaa, Kai, 259
Shikishima-Tsuji, Kayoko, 125
Sośık, Petr, 145
Steinby, Paula, 181

Ukkonen, Esko, 159

Verbaan, Peter, 268

Wiedermann, Jǐŕı, 268
Wood, Derick, 259

Yu, Sheng, 112

	Frontmatter
	Duality for Three: Ternary Symmetry in Process Spaces
	Mathematical Proofs at a Crossroad?
	Rational Relations as Rational Series
	Networks of Standard Watson-Crick {\itshape D}0{\itshape L} Systems with Incomplete Information Communication
	On the Size of Components of Probabilistic Cooperating Distributed Grammar Systems
	Remarks on Sublanguages Consisting of Primitive Words of Slender Regular and Context-Free Languages
	A Semiring-Semimodule Generalization of ω-Context-Free Languages
	Integer Weighted Finite Automata, Matrices, and Formal Power Series over Laurent Polynomials
	Two Models for Gene Assembly in Ciliates
	On Self-Dual Bases of the Extensions of the Binary Field
	On NFA Reductions
	Some Results on Directable Automata
	Rectangles and Squares Recognized by Two-Dimensional Automata
	Substitution on Trajectories
	Recombination Systems
	Algebraic Aspects of Parikh Matrices
	On Distributed Computing on Elliptic Curves
	On the Formal Modelling of Trust in Reputation-Based Systems
	Issues with Applying Cryptography in Wireless Systems
	On a Tomographic Equivalence Between (0,1)-Matrices
	P Systems with Tables of Rules
	Some Properties of Multistage Interconnection Networks
	Structural Equivalence of Regularly Extended E0L Grammars: An Automata Theoretic Proof
	Complexity of Evolving Interactive Systems
	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

